Answer:
k+
Ba2+
Al3+
K+
S2-
you may think that if it has a + it would be bigger, but it is actually the opposite.
<span>To calculate the number of moles of aluminum, sulfur, and oxygen atoms in 4.00 moles of aluminum sulfate, al2(so4)3. We will simply inspect the "number" of aluminum, sulfur, and oxygen atoms available per one mole of the compound. Here we have Al2(SO4)3, which means that for every mole of aluminum sulfate, there are 2 moles of aluminum, 3 (1 times 3) moles of sulfur, and 12 (4x3) moles of oxygen. Since we have four moles of Al2(SO4)3 given, we simply multiply 4 times the moles present per 1 mole of the compound. So we have 4x2 = 8 moles of Al, 4x3 = 12 moles of sulfur, and 4x12 = 48 moles of oxygen.
So the answer is:
8,12,48
</span>
So we look equation for the free Gibbs free energy (ΔG) which depends on entalpy (ΔH), temperature (T) and entropy (ΔS):
ΔG = ΔH - TΔS
ΔG is negative (-) because the water absorption on the silica gel surface is a spontaneous process.
ΔH is negative (-) because the water absorption on the silica gel surface is a exothermic process (it releases heat and if you want to desorb the water form the silica gen you need to add heat which is a endothermic process).
ΔS is negative (-) because the water is adsorbed, so from disorderly state you take the water molecules and put them in a orderly state and by doing that you decrease the entropy.
Answer:
1) THE AGE OF THE SAMPLE 2) URANIUM- LEAD DATING
Explanation:
If theres a mixture of components we can calculate the mole fraction
mole fraction can be calculated as follows
mole fraction of component =

number of moles of ethanol - 3.00 mol
total number of moles in mixture - 3.00 + 5.00 = 8.00 mol
mole fraction of ethanol =

mole fraction of ethanol is 0.375