Ω₀ = the initial angular velocity (from rest)
t = 0.9 s, time for a revolution
θ = 2π rad, the angular distance traveled
Let
α = the angular acceleration
ω = the final angular velocity
The angular rotation obeys the equation
(1/2)*(α rad/s²)*(0.9 s)² = (2π rad)
α = 15.514 rad/s²
The final angular velocity is
ω = (15.514 rad/s²)*(0.9 s) = 13.963 rad/s
If the thrower's arm is r meters long, the tangential velocity of release will be
v = 13.963r m/s
Answer: 13.963 rad/s
Answer:
put these numbers in the boxes from up to down. hope this helps! :)
Explanation:
7
6
3
1
8
4
2
5
Explanation:
A wave is a disturbance in a medium. For example, when some pebbles are thrown in water, the water particles gets disturbed. A wave is characterized by the following parameters i.e.
Frequency
Wavelength etc
The number of oscillations or vibrations in a medium is called the frequency of a wave.
Also, the distance between two consecutive crests and troughs is called the wavelength of a wave. The relationship between the wavelength and the frequency of a wave is given by :
Speed of wave = frequency × wavelength