Answer:
Explanation:
1 g is 9.8 m/s^2 the problem wants the results in km/h so we'll fix that really quick.
9.8 m/s^2 (1 km/1000m)(60 sec/1 min)^2(60 min/1 hour)^2 = 127008 km/hour^2
Now, I'm assuming the ship is starting from rest, and hopefully you know your physics equations. We are going to use vf = vi + at. Everything is just given, or we can assume, so I'll just solve.
vf = vi + at
vf = 0 + 127008 km/hour^2 * 24 hours
vf = 3,048,192 km/hour
If there's anything that doesn't make sense let me know.
Answer:
350 ft/s²
Explanation:
First, convert mph to ft/s.
58 mi/hr × (5280 ft/mi) × (1 hr / 3600 s) = 85.1 ft/s
Given:
v₀ = 85.1 ft/s
v = 0 ft/s
t = 0.24 s
Find: a
v = at + v₀
a = (v − v₀) / t
a = (0 ft/s − 85.1 ft/s) / 0.24 s
a = -354 ft/s²
Rounded to two significant figures, the magnitude of the acceleration is 350 ft/s².
Length of the cord..........................................................
Answer:
Correct answer: t = 2.86 seconds
Explanation:
We first use this formula
V² - V₀² = 2 a d
where V is the final velocity (speed), V₀ the initial velocity (speed),
a the acceleration and d the distance.
We will calculate the acceleration from this formula
a = (V² - V₀²) / (2 d) = (2.5² - 1²) / (2 · 5) = (6.25 - 1) / 10 = 5.25 / 10
a = 0.525 m/s²
then we use this formula
V = V₀ + a t => t = (V - V₀) / a = (2.5 - 1) / 0.525 = 1.5 / 0.525 = 2.86 seconds
t = 2.86 seconds
God is with you!!!
It's highly reactive and contains only one valence electron