Answer:
Biological system is one of the major causes of oscillation due to sensitive negative feedback loops. For instance, imagine a father teaching his son how to drive, the teen is trying to keep the car in the centre lane and his father tell him to go right or go left as the case may be. This is a example of a negative feedback loop of a biological system. If the father's sensitivity to the car's position on the road is reasonable, the car will travel in a fairly straight line down the centre of the road. On the other hand, what happens if the father raise his voice at the son "go right" or when the car drifts a bit to the left? The startled the son will over correct, taking the car too far to the right. The father will then starts yelling "go left" then the boy will over correct again and the car will definitely oscillate back and forth. A scenario that indicates the behavior of a car driver under a very steep feedback control mechanism. Since the driver over corrects in each direction. Therefore causes oscillations.
Explanation:
Answer:
D- Strong and gravitational
Explanation:
Answer:
15000 m/s
Explanation:
You just need to multiply the wavelength with the frequency.
Answer:
See explanation
Explanation:
Notice that the condenser section includes both the hot water and space heater and station (3) is specified as being in the Quality region. Assume that 50°C is a reasonable maximum hot water temperature for home usage, thus at a high pressure of 1.6 MPa, the maximum power available for hot water heating will occur when the refrigerant at station (3) reaches the saturated liquid state. (Quick Quiz: justify this statement). Assume also that the refrigerant at station (4) reaches a subcooled liquid temperature of 20°C while heating the air.
Using the conditions shown on the diagram and assuming that station (3) is at the saturated liquid state
a) On the P-h diagram provided below carefully plot the five processes of the heat pump together with the following constant temperature lines: 50°C (hot water), 13°C (ground loop), and -10°C (outside air temperature)
b) Using the R134a property tables determine the enthalpies at all five stations and verify and indicate their values on the P-h diagram.
c) Determine the mass flow rate of the refrigerant R134a. [0.0127 kg/s]
d) Determine the power absorbed by the hot water heater [2.0 kW] and that absorbed by the space heater [0.72 kW].
e) Determine the time taken for 100 liters of water at an initial temperature of 20°C to reach the required hot water temperature of 50°C [105 minutes].
f) Determine the Coefficient of Performance of the hot water heater [COPHW = 4.0] (defined as the heat absorbed by the hot water divided by the work done on the compressor)
g) Determine the Coefficient of Performance of the heat pump [COPHP = 5.4] (defined as the total heat rejected by the refrigerant in the hot water and space heaters divided by the work done on the compressor)
h) What changes would be required of the system parameters if no geothermal water loop was used, and the evaporator was required to absorb its heat from the outside air at -10°C. Discuss the advantages of the geothermal heat pump system over other means of space and water heating