1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetlana [45]
3 years ago
5

A 65 kg student climbs 7 m up a rope at a constant speed. If the students power to output is 300 w, how long does it take the st

udent to climb the rope
Physics
1 answer:
tino4ka555 [31]3 years ago
3 0

g≈10 m/s²

F=G=mg=65*10=650 N

L=F*h=650*7=4550 J

P=L/t=>t=L/P=4550/300=15.16 s


You might be interested in
The conservation of energy principle applies to a. all systems. b. open systems. c. closed systems. d. Ideal gas systems.
Ainat [17]

Answer:closed systems

Explanation:

A closed system is one in which matter does not enter or leave the system but there is exchange of energy between the system and its environment. In a closed system, the principle of energy conservation applies. The principle of energy conservation states that energy can neither be created nor destroyed but is converted from one form to another. An example of a closed system is a reaction vessel whose lid is closed.

5 0
4 years ago
Read 2 more answers
When the Glen Canyon hydroelectric power plant in Arizona is running at capacity, 690 m3 of water flows through the dam each sec
igomit [66]

Answer:

The maximum electric power output is P_{max} =1.339*10^{9} \ W

Explanation:

From the question we are told that

        The capacity of the hydroelectric plant is \frac{V}{t}   =  690 \ m^3 /s

         The level at which water is been released is h  =  220 \ m

        The efficiency is  \eta  =0.90

       

The electric power output is mathematically represented as

       P  = \frac{PE_l - PE _o}{t}

Where  PE_l is the potential energy at  level h which is mathematically evaluated as  

          PE_l  =  mgh

and  PE_o  is  the potential energy at ground level which is mathematically evaluated as  

          PE_o  =  mg(0)

         PE_o  =  0

So  

         P  = \frac{mgh}{t}

here  m  =   V *  \rho

where V is volume  and  \rho is density of water whose value is  \rho = 1000 kg/m^3

 So  

         P  = \frac{(\rho * V) * gh}{t}

        P  = \frac{V}{t} * gh \rho

substituting values  

       P  =690 * 9.8 * 220 * 1000

      P  =1.488*10^{9} \ W

The maximum possible electric power output is

           P_{max} = P * \eta

substituting values  

         P_{max} =1.488*10^{9} * 0.90

         P_{max} =1.339*10^{9} \ W

6 0
3 years ago
How do i convert 0.25hr into minutes
Nikolay [14]

15 min

Explanation:

take 0.25 and put it in for 1.00 and you will see its 0.25 but when you add it all 4 times it is 1.00 so then you would take that and do it to the hour ... how many times does four go into 60

5 0
3 years ago
A spring gun is made by compressing a spring in a tube and then latching the spring at the compressed position. A 4.97-g pellet
dimaraw [331]

Answer:

v  = 2.8898 \frac{m}{s}

Explanation:

This is a problem easily solve using energy conservation. As there are no non-conservative forces, we know that the energy is conserved.

When the spring is compressed downward, the spring has elastic potential energy. When the spring is relaxed, there is no elastic potential energy, but the pellet will have gained gravitational potential energy and kinetic energy. Lets see what are the terms for each of this.

<h3>Elastic potential energy</h3>

We know that a spring following Hooke's Law has a elastic potential energy:

E_{ep} = \frac{1}{2} k (\Delta x)^2

where \Delta x is the displacement from the relaxed length and k is the spring's constant.

To obtain the spring's constant, we know that Hooke's law states that the force made by the spring is :

\vec{F} = - k \Delta \vec{x}

as we need 9.12 N to compress 4.60 cm, this means:

k = \frac{9.12 \ N}{4.6 \ 10^{-2} \ m}

k = 198.26 \ \frac{ N}{m}

So, the elastic energy of the compressed spring is:

E_{ep} = \frac{1}{2} 198.26 \ \frac{ N}{m} (4.6 \ 10^{-2} \ m)^2

E_{ep} = 0.209759 \ Joules

And when the spring is relaxed, the elastic potential energy will be zero.

<h3>Gravitational potential energy</h3>

To see how much gravitational potential energy will the pellet win, we can use

\Delta E_{gp} = m g \Delta h

where m is the mass of the pellet, g is the acceleration due to gravity and \Delta h is the difference in height.

Taking all this together, the gravitational potential energy when the spring is relaxed will be:

\Delta E_{gp} = 4.97 \ 10^{-3} kg \ 9.8 \frac{m}{s^2} 4.6 \ 10^{-2} m

\Delta E_{gp} = 0.00224 \ Joules

<h3>Kinetic Energy</h3>

We know that the kinetic energy for a mass m moving at speed v is:

E_k = \frac{1}{2} m v^2

so, for the pellet will be

E_k = \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

<h3>All together</h3>

By conservation of energy, we know:

E_{ep} = \Delta E_{gp} + E_k

0.209759 \ Joules = 0.00224 \ Joules + \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

So

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.209759 \ Joules - 0.00224 \ Joules

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.207519 \ Joules

v  = \sqrt{ \frac{ 0.207519 \ Joules}{ \frac{1}{2} \ 4.97 \ 10^{-3} kg } }

v  = 2.8898 \frac{m}{s}

7 0
3 years ago
It is known as a basic unit of all living things.
andrezito [222]

hello, the answer is..

cell

4 0
2 years ago
Other questions:
  • Which aspect of relativity makes faster-than-light travel theoretically possible?
    5·1 answer
  • Refer to the following diagram to answer this question
    9·2 answers
  • a wheel 0.35m in diameter rotates at 2200rpm. calculate its angular velocity in rad/s and its linear speed and acceleration of a
    11·1 answer
  • In a bag there are 18 pink jellybeans, 22 purple jellybeans, 10 orange jellybeans, and 20 red jellybeans what is the probability
    15·1 answer
  • A sled is pushed with 30 Newtons and sliding friction is 10 Newtons find the net force on the sled​
    10·1 answer
  • Which compound is composed of oppositely charged ions
    7·1 answer
  • write down the following units in the ascending of their value A) mm nm cm um B) 1m 1cm 1km 1mm. convert the following units int
    5·1 answer
  • The 6kg box is pushed to the left at a constant speed. The coefficient of friction is 0.78. Solve for the amount of force with w
    10·1 answer
  • A cyclist rides at 30 kilometres per hour. How far will he travel in 2 hours?
    15·1 answer
  • A 16.0 kg child on roller skates, initially at rest, rolls 2.0 m down an incline at an angle of 20.0° with the horizontal. If th
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!