Drafting has been around a long time. We can safely assume that since we’ve had a tool in our hands, we’ve been describing plans and technical representations and doodling ideas. Let’s take a closer aspect at drafting and its advance from an under-the-radar part of the method to a very developed skill set.
<u>Explanation</u>
• 1970s – The beginning computer-aided design systems were included in the industry. Following the design engineers tried the learning curve of using CAD, their performance and productivity went through the roof. Over time, CAD software became affordable and more user-friendly, and its fame grew.
• 1990s – CAD software was expanded further to include 3-D characteristics, and quickly the technical designs of the past enhanced increasingly simulated and accessible to engineer.
• Present – The development of drafting has brought us to the present day, were using 3-D representations is the standard and the aim to generate full virtual prototypes.
Answer and Explanation:
O decreases linearly with the distance from the generator
The LCA process is a systematic, phased approach and consists of four components: goal definition and scoping, inventory analysis, impact assessment, and interpretation. The standards are provided by the International Organisation for Standardisation (ISO) in ISO 14040 and 14044, and describe the four main phases of an LCA: Goal and scope definition. Inventory analysis. Impact assessment.
Hope this is helpful
Answer:
option e is correct answer
Answer:
3.25 ft/s
Explanation:
The crate is of =14-lb=m₁
The angle of inclination is = 40°=Ф
The initial velocity = 0.4 ft/s= v₁
Distance the crate will move is= 0.3 ft =d
The load pulling downwards is = 36 lb= m₂
Acceleration of the pulley, a= m₂g - m₁gsinФ / m₁+m₂ where g= 32.17 ft/s^2
a= 36*32.17 - 14*32.17*sin 40° / 14+36
a=17.37 ft/s^2
Apply the formula for final velocity
V₂²=V₁²+2ad
V₂²=0.4²+ 2*17.37*0.3
V₂²=10.582
V₂ =√10.582 = 3.25 ft/s