The answer for this question is A
Answer:
Explained below
Explanation:
The isohyetal method is one used in estimating Rainfall whereby the mean precipitation across an area is gotten by drawing lines that have equal precipitation. This is done by the use of topographic and other data to yield reliable estimates.
Whereas, the arithmetic method is used to calculate true precipitation by the way of getting the arithmetic mean of all the points or arial measurements that will be considered in the analysis.
Answer:
Explanation:
Previous concepts
Angular momentum. If we consider a particle of mass m, with velocity v, moving under the influence of a force F. The angular momentum about point O is defined as the “moment” of the particle’s linear momentum, L, about O. And the correct formula is:
Applying Newton’s second law to the right hand side of the above equation, we have that r ×ma = r ×F =
MO, where MO is the moment of the force F about point O. The equation expressing the rate of change of angular momentum is this one:
MO = H˙ O
Principle of Angular Impulse and Momentum
The equation MO = H˙ O gives us the instantaneous relation between the moment and the time rate of change of angular momentum. Imagine now that the force considered acts on a particle between time t1 and time t2. The equation MO = H˙ O can then be integrated in time to obtain this:
Solution to the problem
For this case we can use the principle of angular impulse and momentum that states "The mass moment of inertia of a gear about its mass center is ".
If we analyze the staritning point we see that the initial velocity can be founded like this:
And if we look the figure attached we can use the point A as a reference to calculate the angular impulse and momentum equation, like this:
And if we integrate the left part and we simplify the right part we have
And if we solve for we got:
Answer:
thrust washer
can be used to eliminate rubbing friction of wheel touching frame
Answer:
k = 4.21 * 10⁻³(L/(mol.s))
Explanation:
We know that
k = Ae ------------------- euqation (1)
K= rate constant;
A = frequency factor = 4.36 10^11 M⁻¹s⁻¹;
E = activation energy = 93.1kJ/mol;
R= ideal gas constant = 8.314 J/mol.K;
T= temperature = 332 K;
Put values in equation 1.
k = 4.36*10¹¹(M⁻¹s⁻¹)e
k = 4.2154 * 10⁻³(M⁻¹s⁻¹)
here M =mol/L
k = 4.21 * 10⁻³((mol/L)⁻¹s⁻¹)
or
k = 4.21 * 10⁻³((L/mol)s⁻¹)
or
k = 4.21 * 10⁻³(L/(mol.s))