1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wariber [46]
3 years ago
13

Resistors of 150 Ω and 100 Ω are connected in parallel. What is their equivalent resistance?

Engineering
1 answer:
aliina [53]3 years ago
6 0
<h3>your question : </h3>

Resistors of 150 Ω and 100 Ω are connected in parallel. What is their equivalent resistance?

Answer:

the equivalent resistance will be 60 ohms

Explanation:

see the solution in attached picture

You might be interested in
A thin-walled tube with a diameter of 6 mm and length of 20 m is used to carry exhaust gas from a smoke stack to the laboratory
Molodets [167]

Answer:

Explanation:

Mean temperature is given by

T_mean = \frac{T_i + T_ \infinity}{2}\\\\T_mean = \frac{200 + 15}{2}

Tmean = (Ti + T∞)/2

T_mean = 107.5^{0}

Tmean = 107.5⁰C

Tmean = 107.5 + 273 = 380.5K

Properties of air at mean temperature

v = 24.2689 × 10⁻⁶m²/s

α = 35.024 × 10⁻⁶m²/s

\mu = 221.6 × 10⁻⁷N.s/m²

\kappa = 0.0323 W/m.K

Cp = 1012 J/kg.K

Pr = v/α  = 24.2689 × 10⁻⁶/35.024 × 10⁻⁶

              = 0.693

Reynold's number, Re

Pv = 4m/πD²

where Re = (Pv * D)/\mu

Substituting for Pv

Re = 4m/(πD\mu)

     = (4 x 0.003)/( π × 6 ×10⁻³ × 221.6 × 10⁻⁷)

     = 28728.3

Since Re > 2000, the flow is turbulent

For turbulent flows, Use

Dittus - Doeltr correlation with n = 0.03

Nu = 0.023Re⁰⁸Pr⁰³ = (h₁D)/k

(h₁ × 0.006)/0.0323 = 0.023(28728.3)⁰⁸(0.693)⁰³

(h₁ × 0.006)/0.0323 = 75.962

h₁ = (75.962 × 0.0323)/0.006

h₁ = 408.93 W/m².K

4 0
3 years ago
Are the wooden pillars shown in the image below, a dead load?
Brrunno [24]

Answer:

no

Explanation:

it's not a dead load because when load is put on the pillars it's not fully straining it's been slowly getting to be heavier in that period of time before it falls

6 0
3 years ago
1. (5 pts) An adiabatic steam turbine operating reversibly in a powerplant receives 5 kg/s steam at 3000 kPa, 500 °C. Twenty per
KiRa [710]

Answer:

temperature of first extraction 330.8°C

temperature of second extraction 140.8°C

power output=3168Kw

Explanation:

Hello!

To solve this problem we must use the following steps.

1. We will call 1 the water vapor inlet, 2 the first extraction at 100kPa and 3 the second extraction at 200kPa

2. We use the continuity equation that states that the mass flow that enters must equal the two mass flows that leave

m1=m2+m3

As the problem says, 20% of the flow represents the first extraction for which 5 * 20% = 1kg / s

solving

5=1+m3

m3=4kg/s

3.

we find the enthalpies and temeperatures in each of the states, using thermodynamic tables

Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)  

through prior knowledge of two other properties

4.we find the enthalpy and entropy of state 1 using pressure and temperature

h1=Enthalpy(Water;T=T1;P=P1)

h1=3457KJ/kg

s1=Entropy(Water;T=T1;P=P1)

s1=7.234KJ/kg

4.

remembering that it is a reversible process we find the enthalpy and the temperature in the first extraction with the pressure 1000 kPa and the entropy of state 1

h2=Enthalpy(Water;s=s1;P=P2)

h2=3116KJ/kg

T2=Temperature(Water;P=P2;s=s1)

T2=330.8°C

5.we find the enthalpy and the temperature in the second extraction with the pressure 200 kPav y the entropy of state 1

h3=Enthalpy(Water;s=s1;P=P3)

h3=2750KJ/kg

T3=Temperature(Water;P=P3;s=s1)

T3=140.8°C

6.

Finally, to find the power of the turbine, we must use the first law of thermodynamics that states that the energy that enters is the same that must come out.

For this case, the turbine uses a mass flow of 5kg / s until the first extraction, and then uses a mass flow of 4kg / s for the second extraction, taking into account the above we infer the following equation

W=m1(h1-h2)+m3(h2-h3)

W=5(3457-3116)+4(3116-2750)=3168Kw

7 0
3 years ago
Please follow meee ​
vitfil [10]

Answer:

wheeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

3 0
2 years ago
In using the drag coefficient care needs to be taken to use the correct area when determining the drag force. What is a typical
stealth61 [152]

Answer:

Explanation:

We know that Drag forceF_D

  F_D=\dfrac{1}{2}C_D\rho AV^2

Where

             C_D is the drag force constant.

                 A is the projected area.

                V is the velocity.

                ρ is the density of fluid.

Form the above expression of drag force we can say that drag force depends on the area .So We should need to take care of correct are before finding drag force on body.

Example:

 When we place our hand out of the window in a moving car ,we feel a force in the opposite direction and feel like some one trying to pull our hand .This pulling force is nothing but it is drag force.

6 0
3 years ago
Other questions:
  • The lab technician you recently hired tells you the following: Boss, an undisturbed sample of saturated clayey soil was brought
    6·1 answer
  • How does a carburetor work?
    7·1 answer
  • Give four effects of water hammer.​
    6·1 answer
  • Write an application named EnterUppercaseLetters that asks the user to type an uppercase letter from the keyboard. If the charac
    8·1 answer
  • Can a real refrigerator have higher COP than the COP of the Carnot refrigerator?
    7·2 answers
  • How do you make a 3d print
    6·1 answer
  • A car radiator is a cross-flow heat exchanger with both fluids unmixed. Water, which has a flow rate of 0.05 kg/s, enters the ra
    15·1 answer
  • Lets try to get to 100 sub before charismas day <br> Jordan Gracia 32 sub and 5 videos
    13·2 answers
  • Calculate the number of vacancies per cubic meter at 1000∘C for a metal that has an energy for vacancy formation of 1.22 eV/atom
    14·1 answer
  • What car is this? I thinks its a nissan 240sx but i dont know
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!