Answer is: D. Na2SO4.
b(solution) = 0.500 mol ÷ 2.0 L.
b(solution) = 0.250 mol/L.
b(solution) = 0.250 m; molality of the solutions.
ΔT = Kf · b(solution) · i.
Kf - the freezing point depression constant.
i - Van 't Hoff factor.
Dissociation of sodium sulfate in water: Na₂SO₄(aq) → 2Na⁺(aq) + SO₄²⁻(aq).
Sodium sulfate dissociates on sodium cations and sulfate anion, sodium sulfate has approximately i = 3.
Sodium chloride (NaCl) and potassium iodide (KI) have Van 't Hoff factor approximately i = 2.
Carbon dioxide (CO₂) has covalent bonds (i = 1, do not dissociate on ions).
Because molality and the freezing point depression constant are constant, greatest freezing point lowering is solution with highest Van 't Hoff factor.
Answer: Helianthus L. Sunflower
Explanation:
Answer:
See attached picture.
Explanation:
Hello!
In this case, since C2H3Cl is an organic compound we need a central C-C parent chain to which the three hydrogen atoms and one chlorine atom provides the electrons to get all the octets except for H as given on the statement.
In such a way, on the attached picture you can find the required Lewis dot structure without formal charges and with all the unshared electron pairs, considering there is a double bond binding the central carbon atoms in order to compete their octets.
Best regards!
Methane, CH4, would have the lowest boiling point among the three since it has the lowest number of carbon and has no functional groups. Methanol would have the highest boiling point since it has a functional group which contains hydrogen bonding which much stronger than the one in CH3Cl. Hope this helps.<span />