Answer:
The kinetic energy is 1200 J
Explanation:
The Principle of Conservation of energy states that "energy is neither created nor destroyed, it is transformed".
This means that energy can be transformed from one form to another, but the total amount of energy always remains constant, that is, the total energy is the same before and after each transformation.
The mechanical energy of a body or a physical system is the sum of its kinetic energy and the potential energy. According to the Principle of Conservation of Energy for mechanical energy, the total mechanical energy that a body possesses is constant at every instant of time.
Since mechanical energy is equal to the sum of kinetic energy and gravitational potential energy that a body possesses, the only way to stay constant is that:
- when the kinetic energy increases the gravitational potential energy decreases,
- when gravitational potential energy increases, kinetic energy decreases.
Due to the Principle of Conservation of Energy you can say that the gravitational potential energy is converted to kinetic energy. So Gravitational potential energy at the top = kinetic energy at the bottom
<u><em>The kinetic energy is 1200 J</em></u>
Fission and fusion are two processes that release very little amounts of energy.
Answer:
P = 5880 J
Explanation:
Given that,
The mass of the block, m = 30 kg
The block is sitting at a height of 20 m.
The block will have gravitational potential energy. The formula for gravitational potential energy is given by :

So, the required potential energy is equal to 5880 J.
1. True
2. True
3. True
4. True
5. 10ft
Explanation:
The magnetic force acting on a current carrying wire in a uniform magnetic field is given by :

or

Where
is the angle between length and the magnetic field
The magnetic force is perpendicular to both current and magnetic field. It is maximum when it is perpendicular to both current and magnetic field.
So, the correct options are :
- The magnetic force on the current-carrying wire is strongest when the current is perpendicular to the magnetic field lines.
- .The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the field.
- The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the current.