Answer: Lemon blossoms falling off a potted lemon tree may also be caused by cool drafts, as well as under or over watering. A lemon tree dropping flowers may be a sign of drought or other changes in watering. When water is scarce, a lemon tree will drop flowers or fruit to conserve energy. Flooding, waterlogged soil or over-watering can also cause ...
Explanation:
Answer:
the height reached is = 0.458 [m]
Explanation:
We need to make a sketch of the ball and see the location of the reference point where the potential energy is zero. But the kinetic energy will be defined by the following expression:
![Ek=\frac{1}{2} *m*v^{2} \\where:Ek= kinetic energy [J]\\m = mass of the ball [kg]\\v = velocity of the ball [m/s]](https://tex.z-dn.net/?f=Ek%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%5C%5Cwhere%3AEk%3D%20kinetic%20energy%20%5BJ%5D%5C%5Cm%20%3D%20mass%20of%20the%20ball%20%5Bkg%5D%5C%5Cv%20%3D%20velocity%20of%20the%20ball%20%5Bm%2Fs%5D)
Replacing the values on the equation we have:
![Ek=\frac{1}{2}*(2)*(3^{2} )\\ Ek=9[J]\\](https://tex.z-dn.net/?f=Ek%3D%5Cfrac%7B1%7D%7B2%7D%2A%282%29%2A%283%5E%7B2%7D%20%29%5C%5C%20Ek%3D9%5BJ%5D%5C%5C)
This kinetic energy will be transformed in potential energy in the moment when the ball starts to rolling up. Therefore the maximum height reached by the ball depends of the initial velocity given to the ball.
![Ek=Ep\\where\\Ep=potential energy [J]\\Ep=m*g*h\\where\\g=gravity = 9.81[m/s^2]\\h=height reached [m]\\](https://tex.z-dn.net/?f=Ek%3DEp%5C%5Cwhere%5C%5CEp%3Dpotential%20energy%20%5BJ%5D%5C%5CEp%3Dm%2Ag%2Ah%5C%5Cwhere%5C%5Cg%3Dgravity%20%3D%209.81%5Bm%2Fs%5E2%5D%5C%5Ch%3Dheight%20reached%20%5Bm%5D%5C%5C)
Now we have:
![h=\frac{Ep}{m*g} \\h=\frac{9}{2*9.81} \\\\h=0.45 [m]](https://tex.z-dn.net/?f=h%3D%5Cfrac%7BEp%7D%7Bm%2Ag%7D%20%5C%5Ch%3D%5Cfrac%7B9%7D%7B2%2A9.81%7D%20%5C%5C%5C%5Ch%3D0.45%20%5Bm%5D)
In that moment when the ball reach the 0.45 [m] the potencial energy will be maximum and equal to the kinetic energy when the ball has a velocity of 3[m/s]
The answer would be C. Gamma Rays and High Frequency EM waves travel at the speed of light and are transverse waves.
Answer:
0.000003782 m
0.000001891 m
0.000001197125 m
Explanation:
= Wavelength = 248 nm
D = Diameter of beam = 1 cm
f = Focal length = 0.625 cm
The angle is given by

The width is given by

The required width is 0.000003782 m
Minimum resolvable line separation is given by

The minimum resolvable line separation between adjacent lines is 0.000001891 m
when 

The new minimum resolvable line separation between adjacent lines is

So they give us this
V=IR
V= 1.8
I=0.4
R=?
So we insert the thing that we know.
1.8=0.4*R
We need to leave our unknown value alone. So if our value of 0.4 is multiplying the unknown value it passes to the other side dividing.
So we have this.
Lastly we solve.
R=4.5ohms
The formula to find R is V=IR
V/I=R
So the resistance will be the Voltage divided by the Current