Answer:
9
Step-by-step explanation:
0
Step-by-step explanation:
for this question is not even possible
Given:
In triangle DEF, HG is parallel to DF.
To find:
The value of x.
Solution:
In triangles DEF and GEH,
(Common angle)
(Corresponding angle)
(By AA property of similarity)
We know that corresponding sides of similar triangle are proportional.





Isolating variable terms, we get



Therefore, the value of x is equal to 4.
Answer:
a+2b-d=1, 3, 5, 7
Step-by-step explanation:
(ax^2+bx+3)(x+d)
ax^3+bx^2+3x+adx^2+bdx+3d
ax^3+bx^2+adx^2+3x+bdx+3d=x^3+6x^2+11x+12
ax^3=x^3, a=1
bx^2+adx^2=6x^2
x^2(b+ad)=6x^2
b+ad=6
b+(1)d=6
b+d=6
------------
3x+bdx=11x
x(3+bd)=11x
3+bd=11
-----------------
b=6-d
3+(6-d)d=11
3+6d-d^2=11
3-11+6d-d^2=0
-8+6d-d^2=0
d^2-6d+8=0
factor out,
(d-4)(d-2)=0
zero property,
d-4=0, d-2=0
d=0+4=4,
d=0+2=2
b=6-4=2,
b=6-2=4.
------------------
a+2b-d=1+2(2)-2=1+4-2=5-2=3
-------------------
a+2(4)-4=1+8-4=9-4=5
-----------------------
a+2(2)-4=1+4-4=5-4=1
-----------------------
a+2(4)-2=1+8-2=9-2=7