The answer is Monocline. And I checked it, it's correct.
The pertinent equation here is F=ma. You haven't shared the mass of the box, so I will use M to represent that mass.
Then F = M(<span>2.3 m/s^2) (answer)</span>
Answer:
12.5 m/s
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Height (h) = 8 m
Final velocity (v) at 8 m above the lowest point =?
NOTE: Acceleration due to gravity (g) = 9.8 m/s²
The velocity of the roller coaster at 8 m above the lowest point can be obtained as follow:
v² = u² + 2gh
v² = 0² + (2 × 9.8 × 8)
v² = 0 + 156.8
v² = 156.8
Take the square root of both side
v = √156.8
v = 12.5 m/s
Therefore, the velocity of the roller coaster at 8 m above the lowest point is 12.5 m/s.
The statements that are held true with regards to the static equilibrium of bodies are:
<span>The net torque acting on the object must equal zero
</span><span>The net torque on the object does not have to be zero if the net force on the object is zero
Furthermore, when a body is in a state of static equilibrium, the summation of all forces, either vertically or horizontally, must be equal to zero. </span>