The correct answer is :
Unit vectors I and j along the x-axis and y-axis, respectively, define the Cartesian coordinate system. The radial unit vector r, which indicates the direction from the origin, and the unit vector t, which is orthogonal (perpendicular) to the radial direction, together create the polar coordinate system.
We can obtain the horizontal component by applying the trigonometric identity of Cos(Ф), and if we obtain the component on the x axle, such as 22000 (m)×Cos(51°) = x, we may determine that x = 13845.05 metres. We need to obtain the vector components because we already know the distance and the angle.
To learn more about Cartesian unit-vector refer the link:
brainly.com/question/26776558
#SPJ9
That's called the "Cosmic Microwave Background". (CMB)
It was discovered in 1965, and its discoverers were awarded
the Nobel Prize in Physics in 1978.
High density
random words to fill up 20 character minimum for answering questions :P
Answer:
<em>The force is now 9 times the original force</em>
Explanation:
<u>Coulomb's Law
</u>
The electrostatic force between two charged particles is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.
Coulomb's formula is:

Where:

q1, q2 = the particles' charge
d= The distance between the particles
Suppose the distance is reduced to d'=d/3, the new force F' is:




The force is now 9 times the original force
Answer:
L = 1.15 m
Explanation:
The diffraction phenomenon is described by the equation
a sin θ = m λ
Where a is the width of the slit, λ the wavelength and m is an integer, the order of diffraction is left.
The diffraction measurements are made on a screen that is far from the slit, and the angles in the experiment are very small, let's use trigonometry
tan θ = y / L
tan θ = sint θ / cos θ≈ sin θ
We substitute in the first equation
a (y / L) = m λ
The first maximum occurs for m = 1
The distance is measured from the center point of maximum, which coincides with the center of the slit, in this case the distance is the total width of the central maximum, so the distance (y) measured from the center is
y = 1.15 / 2 = 0.575 cm
y = 0.575 10⁻² m
Let's clear the distance to the screen (L)
L = a y / λ
Let's calculate
L = 115 10⁻⁶ 0.575 10⁻² / 575 10⁻⁹
L = 1.15 m