Answer:
A) If the paintball stops completely the magnitude of the change in the paintball’s momentum is 
B) If the paintball bounces off its target and afterward moves in the opposite direction with the same speed, the change in the paintball’s momentum is 
C) A paintball bouncing off your skin in the opposite direction with the same speed hurts more than a paintball exploding upon your skin because of the strength exerted is twice than if it explodes.
Explanation:
Hi
A) We use the formula of momentum
, so we have 
B) We use the same formula above, then due we have a change of direction at the same speed, therefore the change in the momentum is the double so
.
C) The average strength of the force an object exerts during impact is determined by the amount the object’s momentum changes. therefore
, as we don't have any data about the impact time but we know momentum is twice, time does no matter and strength is twice too.
B- Same force
It’s b because force always acts in equal but opposite pairs.
To find the horizontal distance multiple the horizontal velocity by the time. Since there is no given time it must be calculated using kinematic equation.
Y=Yo+Voyt+1/2at^2
0=.55+0+1/2(-9.8)t^2
-.55=-4.9t^2
sqrt(.55/4.9)=t
t=0.335 seconds
Horizontal distance
=0.335s*1.2m/s
=0.402 meters
Answer:
Final velocity will be 314.6 m/sec
Distance traveled = 1314.24 m
Explanation:
We have given initial velocity u = 233 m/sec
Acceleration 
Time t = 4.8 sec
From first equation of motion
, here v is final velocity, u is initial velocity and t is time
So 
Now we have to find distance traveled
From second equation of motion

So distance traveled in given time will be 1314.24 m