false all element when they are combined eachother thier valance number will change
the combination of oxygen and aluminum gives us Al2O3 see even the numbers are changing thank you if you have a comment you can write
Answer:
The hydrogen atom has just one electron, but many spectral lines. However it contains many shells and the movement of that electron from one shell to another causes the release of energy and also an emission of photons.
A spectral line are dark or bright lines formed within a specific frequency range which differ from other frequencies.Because of the difference of energy for the various shells, it produces different wavelengths and this is the reason for the many spectral line for hydrogen.
Answer:
Solar energy absorbed at Earth’s surface is radiated back into the atmosphere as heat. As the heat makes its way through the atmosphere and back out to space, greenhouse gases absorb much of it. Why do greenhouse gases absorb heat? Greenhouse gases are more complex than other gas molecules in the atmosphere, with a structure that can absorb heat. They radiate the heat back to the Earth's surface, to another greenhouse gas molecule, or out to space.
There are several different types of greenhouse gases. The major ones are carbon dioxide, water vapor, methane, and nitrous oxide. These gas molecules all are made of three or more atoms. The atoms are held together loosely enough that they vibrate when they absorb heat. Eventually, the vibrating molecules release the radiation, which will likely be absorbed by another greenhouse gas molecule. This process keeps heat near the Earth’s surface. Most of the gas in the atmosphere is nitrogen and oxygen, which cannot absorb heat and contribute to the greenhouse effect.
Explanation:
Answer:
0.6522 mol/L.
Explanation:
<em>Molarity is defined as the no. of moles of a solute per 1.0 L of the solution.</em>
<em />
M = (no. of moles of solute)/(V of the solution (L)).
<em>∴ M = (no. of moles of solute)/(V of the solution (L)) </em>= (1.5 mol)/(2.3 L) = <em>0.6522 mol/L.</em>