1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IgorC [24]
3 years ago
11

How much is 2000mg in grams?

Mathematics
2 answers:
Vlad [161]3 years ago
7 0
It’s 2 grams ...............
Ghella [55]3 years ago
4 0

Answer:

2 grams

Step-by-step explanation:

You might be interested in
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
A club logo is made from a square and a trapezium.
Viktor [21]

Answer:

hi im from another country see ya ... your country is amazing

Step-by-step explanation:

4 0
2 years ago
Can someone help me? It’s the factory one
alekssr [168]
3.21 it should be at least
3 0
3 years ago
Read 2 more answers
PHOTO HERE^<br> help????????
Dmitrij [34]
Please put a thanks so i know your question was answered. It helps since im new here and really boosts my morale :D

if x =4 and y =-3

F = \frac{ x^{2}-4y }{2}  =  \frac{ (4)^{2}-4(-3) }{2}  =  \frac{ 16+12 }{2}  = 14


3 0
3 years ago
Vvorth 1 points
viva [34]

Hi there!  

»»————- ★ ————-««

I believe your answer is:  

"Add 4 to both sides, and then divide by 2. The solution is x = 12."

»»————- ★ ————-««  

Here’s why:  

⸻⸻⸻⸻

  • To solve for 'x', we would have to use inverse operations.
  • We would first have to add four to both sides to undo the negative four. Addition is the opposite of subtraction.
  • We would then divide by 2 to isolate 'x'. Division is the opposite of multiplication.

⸻⸻⸻⸻

\boxed{\text{Solving for 'x'...}}\\\\2x - 4 = 20\\------------\\\rightarrow 2x - 4 + 4 = 20 + 4\\\\\rightarrow 2x = 24\\\\\rightarrow \frac{2x=24}{2}\\\\\rightarrow \boxed{x = 12}

⸻⸻⸻⸻

»»————- ★ ————-««  

Hope this helps you. I apologize if it’s incorrect.  

6 0
3 years ago
Other questions:
  • What are the solutions of 3(x – 4)(2x – 3) = 0? Check all that apply.
    12·2 answers
  • Which equation demonstrates the additive identity property?
    6·2 answers
  • What is the surface area of a cube that has a side length of 8 mm?
    7·2 answers
  • Do u guys have GO MATH 6 gradebooks
    14·1 answer
  • The temperature on Saturday was 6 1/2 celcius. On Sunday it became 3 3/4 celcius colder what was the temperature on sunday
    5·2 answers
  • Two angles are complimentary. The larger angle is 3 degrees less than twice the measure of the smaller angle. Find the measure o
    11·1 answer
  • A friend lends you $250 for a week, which you agree to repay with 5% interest. How much will you have to repay?
    10·1 answer
  • Which expression matches the graph?
    11·1 answer
  • Which reason justifies statement 2?
    11·1 answer
  • HEY I RLLLLLLY NEED HELP! 50 POINTS AND BRAINLIEST IS YOU'RE RIGHT!!!!
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!