Answer:
Mitochondria
Explanation:
Mitochondria are organelles whose membranes are specialized for aerobic respiration.
We can calculate the new volume of the gas using the Combined Gas Law:
(P1 x V1) / T1 = (P2 x V2) / T2
The initial volume, pressure, and temperature were 280 mL, 1.3 atm, and 291.15 K (changing the temperature into Kelvin is necessary), and the final volume, pressure, and temperature is V2, 3.0 atm, and 308.15 K. Plugging these values in and solving, we find that:
(P1 x V1) / T1 = (P2 x V2) / T2
(1.3 atm x 280 mL) / 291.15 K = (3.0 atm x V2) / 308.15 K
V2 = 128.42 mL
This makes sense considering the conditions, a small increase in temperature would make the gas expand but a significant increase in the pressure would cause the volume to decrease.
Hope this helps!
<u>Answer:</u> The mass of gallium produced by the electrolysis is 0.0354 grams.
<u>Explanation:</u>
The equation for the deposition of Ga(s) from Ga(III) solution follows:

- To calculate the total charge, we use the equation:

where,
C = charge
I = current = 0.490 A
t = time required (in seconds) =
(Conversion factor: 1 min = 60 s)
Putting values in above equation, we get:

- To calculate the moles of electrons, we use the equation:

where,
C = charge = 147 C
F = Faradays constant = 96500

- Now, to calculate the moles of gallium, we use the equation:

where,
n = number of electrons transferred = 3
Putting values in above equation, we get:

- To calculate the mass of gallium, we use the equation:

Moles of Gallium = 
Molar mass of Gallium = 69.72 g/mol
Putting values in above equation, we get:

Hence, the mass of gallium produced by the electrolysis is 0.0354 grams.