Answer:2.541
Explanation:
Well , Potential Energy = mgh
m=mass = 82
g=acceleration of gravity=9.80m/s^2
h=what we are looking for
PE=mgh
PE/(mg) = h
Substitute in the values:
1970/(82 x 9.8) = h 2.541
The mutualism I believe. So sorry if I’m wrong
Answer:
3500N
Explanation:
Given parameters:
Mass of driver = 50kg
Speed = 35m/s
Time = 0.5s
Unknown:
Average force the seat belt exerts on her = ?
Solution:
The average force the seat belt exerts on her can be deduced from Newton's second law of motion.
F = mass x acceleration
So;
F = mass x 
F = 50 x
= 3500N
Answer:
a) > x<-c(1,2,3,4,5)
> y<-c(1.9,3.5,3.7,5.1,6)
> linearmodel<-lm(y~x)
And the output is given by:
> linearmodel
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
1.10 0.98
b) 
And if we compare this with the general model 
We see that the slope is m= 0.98 and the intercept b = 1.10
Explanation:
Part a
For this case we have the following data:
x: 1,2,3,4,5
y: 1.9,3.5,3.7,5.1, 6
For this case we can use the following R code:
> x<-c(1,2,3,4,5)
> y<-c(1.9,3.5,3.7,5.1,6)
> linearmodel<-lm(y~x)
And the output is given by:
> linearmodel
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
1.10 0.98
Part b
For this case we have the following trend equation given:

And if we compare this with the general model 
We see that the slope is m= 0.98 and the intercept b = 1.10
Strange as it may seem, that's true. (choice 'a'.)
"Acceleration" doesn't mean "speeding up". It means ANY change in
the speed or direction of motion. So a car with the brakes applied
and slowing down, and a point on the rim of a bicycle wheel that's
turning at a constant rate, are both accelerating.