1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa86 [58]
2 years ago
6

In a two-slit experiment using coherent light, the distance between the slits and the screen is 1.10 m, and the distance between

the slits is 0.0400 mm. If the second order bright fringe is measured to be 4.20 cm from the centerline on the screen, what is the wavelength of light?
A) 620 nm
B) 200 nm
C) 401 nm
D) 763 nm
E) 381 nm
Physics
1 answer:
Paul [167]2 years ago
3 0

Answer:

D) 763 nm

Explanation:

Calculation for the wavelength of light

Using this formula

Wavelength of light=Delta Y*Distance / Length

Where,

Delta Y represent the 2nd order bright fringe

Length represent the distance between both the slits and the screen

Distance represent the Distance between the slits

Let note that cm to m = (4.2) x 10^-2 and mm to m= ( 0.0400x 10^-3)

Now Let plug in the formula

Wavelength of light=[(4.2 x 10^-2m)(0.0400 x 10^-3m) / 2(1.1m)]*10^-7 meters

Wavelength of light=[(0.042m) (0.0004m)/2.2m]*10^-7 meters

Wavelength of light =(0.0000168m/2.2m)*10^-7 meters

Wavelength of light =7.63 *10^-7 meters

Wavelength of light =763 nm

Therefore the Wavelength of light will be 763 nm

You might be interested in
Electric forces stay the same as distance changes electric field change true or false
Kisachek [45]

Answer:

False

Explanation:

7 0
3 years ago
The part of Earth's rocky outer layer that makes up the land masses is the
tangare [24]
D

Giddy UP!!!!!!!!!!!!!!!!!!!!!
4 0
3 years ago
Which process do plants use to turn sunlight into food energy? photosynthesis cellular respiration transpiration evaporation
Aloiza [94]
The answer is A. Photosynthesis 
have a good day!
5 0
3 years ago
Read 2 more answers
Sphere A with mass 80 kg is located at the origin of an xy coordinate system; sphere B with mass 60 kg is located at coordinates
IRINA_888 [86]

Answer:

Fc = [ - 4.45 * 10^-8 j ] N  

Explanation:

Given:-

- The masses and the position coordinates from ( 0 , 0 ) are:

       Sphere A : ma = 80 kg , ( 0 , 0 )

       Sphere B : ma = 60 kg , ( 0.25 , 0 )

       Sphere C : ma = 0.2 kg , ra = 0.2 m , rb = 0.15

- The gravitational constant G = 6.674×10−11 m3⋅kg−1⋅s−2

Find:-

what is the gravitational force on C due to A and B?

Solution:-

- The gravitational force between spheres is given by:

                       F = G*m1*m2 / r^2

Where, r : The distance between two bodies (sphere).

- The vector (rac and rbc) denote the position of sphere C from spheres A and B:-

 Determine the angle (α) between vectors rac and rab using cosine rule:

                   cos ( \alpha ) = \frac{rab^2 + rac^2 - rbc^2}{2*rab*rac} \\\\cos ( \alpha ) = \frac{0.25^2 + 0.2^2 - 0.15^2}{2*0.25*0.2}\\\\cos ( \alpha ) = 0.8\\\\\alpha = 36.87^{\circ \:}

 Determine the angle (β) between vectors rbc and rab using cosine rule:

                   cos ( \beta  ) = \frac{rab^2 + rbc^2 - rac^2}{2*rab*rbc} \\\\cos ( \beta  ) = \frac{0.25^2 + 0.15^2 - 0.2^2}{2*0.25*0.15}\\\\cos ( \beta  ) = 0.6\\\\\beta  = 53.13^{\circ \:}

- Now determine the scalar gravitational forces due to sphere A and B on C:

       Between sphere A and C:

                  Fac = G*ma*mc / rac^2

                  Fac = (6.674×10−11)*80*0.2 / 0.2^2  

                  Fac = 2.67*10^-8 N

                  vector Fac = Fac* [ - cos (α) i + - sin (α) j ]

                  vector Fac = 2.67*10^-8* [ - cos (36.87°) i + -sin (36.87°) j ]

                  vector Fac = [ - 2.136 i - 1.602 j ]*10^-8 N

       Between sphere B and C:

                  Fbc = G*mb*mc / rbc^2

                  Fbc = (6.674×10−11)*60*0.2 / 0.15^2  

                  Fbc = 3.56*10^-8 N

                  vector Fbc = Fbc* [ cos (β) i - sin (β) j ]

                  vector Fbc = 3.56*10^-8* [ cos (53.13°) i - sin (53.13°) j ]

                  vector Fbc = [ 2.136 i - 2.848 j ]*10^-8 N

- The Net gravitational force can now be determined from vector additon of Fac and Fbc:

                  Fc = vector Fac + vector Fbc

                  Fc = [ - 2.136 i - 1.602 j ]*10^-8  + [ 2.136 i - 2.848 j ]*10^-8

                  Fc = [ - 4.45 * 10^-8 j ] N  

3 0
3 years ago
The diffraction limit is a limit on: The diffraction limit is a limit on: A telescope's size. A telescope's angular resolution.
Mnenie [13.5K]

Answer:

A telescope's angular resolution.

Explanation:

Diffraction limit is a minimum angular separation of two sources and it can be distinguished by the telescope. This angle is known as the diffraction limit. It is proportional to the wavelength of light and it has an inverse relation with the diameter of the telescope. Mathematically  it is defined as

θ = 1.22λ/d

where θ is the angle, λ wavelength and d is the diameter of the objective mirror (lenz).

7 0
2 years ago
Other questions:
  • Legal concept establishing that evidence speaks for itself
    15·1 answer
  • Diego rivera's mural for the lobby of the rca building was destroyed because
    5·1 answer
  • Reeti has a mass of 51.0 kg. The Gravitron, a ride that spins so fast that the floor can be removed without the riders falling,
    13·1 answer
  • What happens between time 0 minutes and time 1 minute?
    7·1 answer
  • The tire on this drag racer is severely twisted: The force of the road on the tire is quite large(most likely several times the
    11·1 answer
  • Are lions stronger then tigers?
    12·1 answer
  • What is the momentum of a compact car that is 750 kg and is travelling 30 m/s?
    6·1 answer
  • When are theories constructed?
    11·1 answer
  • I need HELP ASAP please!!!
    14·1 answer
  • Using a schematic diagram, explain the steps of the laser technique.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!