Given 3.72 g of P and 21.28g of Cl, converting these to moles: ( 3.72 g P)(mol P/30.97 g P) = 0.12 mol P (21.28 g Cl)(mol Cl/35.45 g Cl) = 0.60 mol Cl P:Cl = 0.12/0.60, therefore P: Cl =1/5 Therefore, PCl5 hope it helps
Answer;
Yes; this reaction be spontaneous if coupled with the hydrolysis of ATP.
Explanation;
The reaction converting glycerol to glycerol-3-phosphate (energetically unfavorable) can be coupled with the conversion of ATP to ADP (energetically favorable):
Glycerol + HPO42 ⟶glycerol-3-phosphate+H2O
ATP + H2O⟶ ADP + HPO42− + H+
The greenhouse effect is a natural process that warms the Earth’s surface. When the Sun’s energy reaches the Earth’s atmosphere, some of it is reflected back to space and the rest is absorbed and re-radiated by greenhouse gases.
Greenhouse gases include water vapour, carbon dioxide, methane, nitrous oxide, ozone and some artificial chemicals such as chlorofluorocarbons (CFCs).
The absorbed energy warms the atmosphere and the surface of the Earth. This process maintains the Earth’s temperature at around 33 degrees Celsius warmer than it would otherwise be, allowing life on Earth to exist.
hope it helps you
follow for more………………………>_<
Equilibrium expression is ![Keq = \frac{[H3O+][HCO3^-]}{[H2CO3]}\\](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%2B%5D%5BHCO3%5E-%5D%7D%7B%5BH2CO3%5D%7D%5C%5C)
<u>Explanation:</u>
Equilibrium expression is denoted by Keq.
Keq is the equilibrium constant that is defined as the ratio of concentration of products to the concentration of reactants each raised to the power its stoichiometric coefficients.
Example -
aA + bB = cC + dD
So, Keq = conc of product/ conc of reactant
![Keq = \frac{[C]^c [D]^d}{[A]^a [B]^b}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BC%5D%5Ec%20%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%20%5BB%5D%5Eb%7D)
So from the equation, H₂CO₃+H₂O = H₃O+HCO₃⁻¹
![Keq = \frac{[H3O^+]^1 [HCO3^-]^1}{[H2CO3]^1 [H2O]^1}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%5E%2B%5D%5E1%20%5BHCO3%5E-%5D%5E1%7D%7B%5BH2CO3%5D%5E1%20%5BH2O%5D%5E1%7D)
The concentration of pure solid and liquid is considered as 1. Therefore, concentration of H2O is 1.
Thus,
![Keq = \frac{[H3O+][HCO3^-]}{[H2CO3]}\\](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%2B%5D%5BHCO3%5E-%5D%7D%7B%5BH2CO3%5D%7D%5C%5C)
Therefore, Equilibrium expression is ![Keq = \frac{[H3O+][HCO3^-]}{[H2CO3]}\\](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%2B%5D%5BHCO3%5E-%5D%7D%7B%5BH2CO3%5D%7D%5C%5C)
The sample response given in the question is right.
To find the answer, we need to know more about the distance and displacement.
<h3>How distance differ from displacement?</h3>
- Displacement is the shortest distance between the initial and final points of a body.
- It is the change in position with a fixed direction.
- Displacement is a vector quantity and can be positive, negative or zero values.
- Distance is the length of actual path of the body between initial and final positions.
- It's a scalar quantity and it can be positive or zero.
- The magnitude of displacement is less than or equal to the distance travelled.
Thus, we can conclude that the given sample response is right.
Learn more about distance here:
brainly.com/question/28124225
#SPJ1