Answer:
<em>The data set marked as B has the largest standard deviation</em>
Explanation:
<u>Standard Deviation</u>
It's a number used to show how a set of measurements is spread out from the average value. A low standard deviation means that most of the values are close to the average. A high standard deviation means that the numbers are more spread out.
The formula for the standard deviation is
![\displaystyle \sigma=\sqrt{\frac{\sum (x_i-\mu)^2}{n}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Csigma%3D%5Csqrt%7B%5Cfrac%7B%5Csum%20%28x_i-%5Cmu%29%5E2%7D%7Bn%7D%7D)
Where
is the value of each measurement, n is the number of elements in the set, and
is the average or media of the values, defined as
![\displaystyle \mu=\frac{\sum x_i}{n}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cmu%3D%5Cfrac%7B%5Csum%20x_i%7D%7Bn%7D)
Let's analyze each set of data:
A.3,4,3,4,3,4,3
The average is
![\displaystyle \mu=\frac{3+4+3+4+3+4+3}{7}=3.43](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cmu%3D%5Cfrac%7B3%2B4%2B3%2B4%2B3%2B4%2B3%7D%7B7%7D%3D3.43)
Computing the stardard deviation:
![\sigma=\sqrt{\frac{(3-3.43)^2+(4-3.43)^2+(3-3.43)^2+(4-3.43)^2+(3-3.43)^2+(4-3.43)^2+(3-3.43)^2}{7}}](https://tex.z-dn.net/?f=%5Csigma%3D%5Csqrt%7B%5Cfrac%7B%283-3.43%29%5E2%2B%284-3.43%29%5E2%2B%283-3.43%29%5E2%2B%284-3.43%29%5E2%2B%283-3.43%29%5E2%2B%284-3.43%29%5E2%2B%283-3.43%29%5E2%7D%7B7%7D%7D)
![\sigma=0.5](https://tex.z-dn.net/?f=%5Csigma%3D0.5)
B.1,6,3,15,4,12,8
The average is
![\displaystyle \mu=\frac{1+6+3+15+4+12+8}{7}=7](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cmu%3D%5Cfrac%7B1%2B6%2B3%2B15%2B4%2B12%2B8%7D%7B7%7D%3D7)
Computing the stardard deviation:
![\sigma=\sqrt{\frac{(1-7)^2+(6-7)^2+(3-7)^2+(15-7)^2+(4-7)^2+(12-7)^2+(8-7)^2}{7}}](https://tex.z-dn.net/?f=%5Csigma%3D%5Csqrt%7B%5Cfrac%7B%281-7%29%5E2%2B%286-7%29%5E2%2B%283-7%29%5E2%2B%2815-7%29%5E2%2B%284-7%29%5E2%2B%2812-7%29%5E2%2B%288-7%29%5E2%7D%7B7%7D%7D)
![\sigma=4.7](https://tex.z-dn.net/?f=%5Csigma%3D4.7)
C. 20, 21,23,19,19,20,20
The average is
![\displaystyle \mu=\frac{20+21+23+19+19+20+20}{7}=20.29](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cmu%3D%5Cfrac%7B20%2B21%2B23%2B19%2B19%2B20%2B20%7D%7B7%7D%3D20.29)
Computing the stardard deviation:
![\sigma=\sqrt{\frac{(20-20.29)^2+(21-20.29)^2+(23-20.29)^2+(19-20.29)^2+(19-20.29)^2+(20-20.29)^2+(20-20.29)^2}{7}}](https://tex.z-dn.net/?f=%5Csigma%3D%5Csqrt%7B%5Cfrac%7B%2820-20.29%29%5E2%2B%2821-20.29%29%5E2%2B%2823-20.29%29%5E2%2B%2819-20.29%29%5E2%2B%2819-20.29%29%5E2%2B%2820-20.29%29%5E2%2B%2820-20.29%29%5E2%7D%7B7%7D%7D)
![\sigma=1.3](https://tex.z-dn.net/?f=%5Csigma%3D1.3)
D.12,14,13,14,12,13,12
The average is
![\displaystyle \mu=\frac{12+14+13+14+12+13+12}{7}=12.86](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cmu%3D%5Cfrac%7B12%2B14%2B13%2B14%2B12%2B13%2B12%7D%7B7%7D%3D12.86)
Computing the stardard deviation:
![\sigma=\sqrt{\frac{(12-12.86)^2+(14-12.86)^2+(13-12.86)^2+(14-12.86)^2+(12-12.86)^2+(13-12.86)^2+(12-12.86)^2}{7}}](https://tex.z-dn.net/?f=%5Csigma%3D%5Csqrt%7B%5Cfrac%7B%2812-12.86%29%5E2%2B%2814-12.86%29%5E2%2B%2813-12.86%29%5E2%2B%2814-12.86%29%5E2%2B%2812-12.86%29%5E2%2B%2813-12.86%29%5E2%2B%2812-12.86%29%5E2%7D%7B7%7D%7D)
![\sigma=0.8](https://tex.z-dn.net/?f=%5Csigma%3D0.8)
We can see the data set marked as B has the largest standard deviation