Answer:
The two samples have identical properties because they are the samples of the same element. Intensive properties are properties of matter that do not change depending on the amount of matter. Luster, reactivity, and ductility are all intensive properties. That is why the two samples can be different sizes or shapes, but have identical properties.
When humans burn fossil fuels, the stored carbon is released into the atmosphere as carbon dioxide. The carbon is then free to cycle through the Earth and can upset the natural balance of the carbon available, changing the way that processes occur on Earth.
Answer:
Ksp = 3.24 x 10⁻⁴
Explanation:
The dissociation equilibrium for a generic salt AB is:
AB(s) ⇄ A⁺(aq) + B⁻(aq)
s s
For instance, the expression for the Ksp constant is:
Ksp = [A⁺] [B⁻] = s x s = s²
According to the problem, 0.0180 mol of the salt is soluble in 1.00 L os water. That means that the solubility of the salt (s) is equal to 0.0180 mol per liter.
s = moles of solute/L of solution = 0.0180 mol/L
Thus, we calculate Ksp from the s value as follows:
Ksp = s² = (0.0180)² = 3.24 x 10⁻⁴
Cars and bike yesyesyesyesyeyseyeyeyeyey
Answer:
I. A polyprotic, weak acid
II. Na2HPO4
Explanation:
Buffer solutions are those that, upon the addition of an acid or base, are capable of reacting by opposing the part of the basic or acid component to keep the pH fixed.
Buffers consist of hydrolytically active salts that dissolve in water. The ions of these salts are combined with acids and alkalis. These hydrolytically active salts are the products that result from the reaction between weak acids and strong alkalis such as calcium carbonate (from carbonic acid and calcium hydroxide) or between strong acids and weak alkalis such as ammonium chloride (a from hydrochloric acid and ammonium hydroxide).
A buffer acid reacts when a weak acid or weak base is combined with its corresponding hydrolytic salt in a water solution, a buffer system called a buffer is formed. As in this case a weak polyrotic acid with Na2HPO4, which allows the solution to be maintained at a pH of 3.8 against small aggregate amounts of both acid and base, thus favoring the reaction at a pH of 3.8
A buffer system is not always appropriate, because the ions of some hydrolytic salts can, for example, damage organisms that come into contact with it.