1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Debora [2.8K]
3 years ago
15

1. A 14-cm tall object is placed 26 cm from a converging lens that has a focal length of 13 cm.

Physics
1 answer:
AURORKA [14]3 years ago
5 0

Answer:

a) Please find attached the required drawing of light passing through the lens

By the use of similar triangles;

The image distance from the lens = 26 cm

The height of the image = 14 cm

c) The image distance from the lens = 26 cm

The height of the image = 14 cm

Explanation:

Question;

a) Determine the image distance and the height of the image

b) Calculate the image position and height

The given parameters are;

The height of the object, h = 14 cm

The distance of the object from the mirror, u = 26 cm

The focal length of the mirror, f = 13 cm

The location of the object = 2 × The focal length

Therefore, given that the center of curvature ≈ 2 × The focal length, we have;

The location of the object ≈ The center of curvature of the lens

The diagram of the object, lens and image created with MS Visio is attached

From the diagram, it can be observed, using similar triangles, that the image distance from the lens = The object distance from the lens = 26 m

The height of the image = The height of the object - 14 cm

b) The lens equation is used for finding the image distance from the lens as follows;

\dfrac{1}{u} + \dfrac{1}{v} = \dfrac{1}{f}

Where;

v = The image distance from the lens

We get;

v = \dfrac{u \times f}{u - f}

Therefore;

v = \dfrac{26 \times 13}{26 - 13} = \dfrac{26 \times 13}{13} = 26

The distance of the image from the lens, v = 26 cm

The magnification, M =v/u

∴ M = 26/26 = 1, therefore, the object and the image are the same size

Therefore;

The height of the image = The height of the object = 14 cm.

You might be interested in
Two stretched copper wires both experience the same stress. The first wire has a radius of 3.9×10-3 m and is subject to a stretc
maw [93]

The stretching force acting on the second wire, given the data is 588 N

<h3>Data obtained from the question</h3>
  • Radius of fist wire (r₁) = 3.9×10⁻³ m
  • Force of first wire (F₁) = 450 N
  • Radius of second wire (r₂) = 5.1×10⁻³ m
  • Force of second wire (F₂) =?

<h3>How to determine the force of the second wire</h3>

F₁ / r₁ = F₂ / r₂

450 / 3.9×10⁻³ = F₂ / 5.1×10⁻³

cross multiply

3.9×10⁻³ × F₂ = 450 × 5.1×10⁻³

Divide both side by 3.9×10⁻³

F₂ = (450 × 5.1×10⁻³) / 3.9×10⁻³

F₂ = 588 N

Learn more about spring constant:

brainly.com/question/9199238

#SPJ1

7 0
2 years ago
A flat uniform circular disk (radius = 2.00 m, mass= 100
ExtremeBDS [4]

Answer:

0.5 rad / s

Explanation:

Moment of inertia of the disk I₁ = 1/2 MR²

M is mass of the disc and R is radius

Putting the values in the formula

Moment of inertia of the disc  I₁  = 1/2 x 100 x 2 x 2

= 200 kgm²

Moment of inertia of man about the axis of rotation of disc

mass x( distance from axis )²

I₂  = 40 x 1.25²

= 62.5 kgm²

Let ω₁ and ω₂ be the angular speed of disc and man about the axis

ω₂ = tangential speed / radius of circular path

= 2 /1.25 rad / s

= 1.6 rad /s

ω₁ = ?

Applying conservation of angular moment ( no external torque is acting on the disc )

I₁ω₁ = I₂ω₂

200 X ω₁ = 62.5 X 1.6

ω₁ =  0.5 rad / s

7 0
3 years ago
The direction in which heat flows between two bodies depend on their
Alchen [17]

Answer:

b. jury wasn't on ayesha akter

6 0
4 years ago
It has been proposed that we could explore Mars using inflated balloons to hover just above the surface. The buoyancy of the atm
klio [65]

Answer:

a) mb = 0.0596 kg ; r = 0.974 m

b) a = 754 m/s^2 .. (Upward)

c) mL = 5.96 kg

Explanation:

Given:-

- The density of Mars atmosphere , ρ = 0.0154 kg/m^3

- The surface density of ballon, σ = 5.0g/m^2

Solution:-

(a) What should be the radius and mass of these balloons so they just hover above the surface of Mars?

- We will first isolate a balloon in the Mar's atmosphere and consider the forces acting on the balloon. We have two forces acting on the balloon.

- The weight of the balloon - "W" - i.e ( Tough plastic weight + Gas inside balloon). Since, the balloon is filled with a very light gas we will assume the weight due to gas inside to be negligible. So we have:

                            W = mb*g

Where,  mb: Mass of balloon

             g: Gravitational constant for Mars

- The mass of the balloon can be determined by using the surface density of the tough plastic given as "σ" and assuming the balloon takes a spherical shape when inflated with surface area "As".

                           As = 4πr^2

Where,  r: The radius of balloon

So,                      mb =  4σπr^2

- Substitute the mass of balloon "mb" in the expression developed for weight of the balloon:

                         W = 4*σ*g*πr^2    ......... Eq1

- The weight of the balloon is combated by the buoyant force - "Fb" produced by the volume of Mars atmosphere displaced by the balloon acting in the upward direction:

                        Fb = ρ*Vs*g

Where,    Vs : Volume of sphere = 4/3 πr^3

So,                    Fb = ρ*g*4/3 πr^3   ....... Eq 2        

- Apply the Newton's equilibrium conditions on the balloon in the vertical direction:

                       Fb - W = 0

                       Fb = W

                       ρ*g*4/3 πr^3 = 4*σ*g*πr^2        

                       r = 3σ / ρ

                       r = 3*0.005 / 0.0154

                       r = 0.974 m           .... Answer            

- Use the value of radius "r" and compute the "mb":

                       mb =  4σπr^2

                       mb =  4*0.005*π (0.974)^2  

                       mb = 0.0596 kg   ... Answer  

(b) If we released one of the balloons from part (a) on earth, where the atmospheric density ρ = 1.20kg/m^3, what would be its initial acceleration assuming it was the same size as on Mars? Would it go up or down?

- The similar analysis is to be applied when the balloon of the same size i.e r = 0.974 m and mass mb = 0.0596 kg is inflated on earth with density  ρ = 1.20kg/m^3.

- Now see that the buoyant force acting on the balloon due to earth's atmosphere is different from that found on Mars. So the new buoyant force Fb using Eq2 is:

                       Fb = ρ*g*4/3 πr^3

Where,   g: Gravitational constant on earth = 9.81 m/s^2

                       Fb = (1.20)*(9.81)*(4/3)* π*(0.974)^3

                       Fb = 45.5 N

- Apply the Newton's second law of motion in the vertical direction on the balloon:

                      Fb - W = mb*a

Where,          a: The acceleration of balloon

                     a = (Fb - W) / mb

                     a = Fb/mb - g

                     a = 45.5/0.0596 - 9.81

                    a = 754 m/s^2  (upward) ..... Answer

c), d) If on Mars these balloons have five times the radius found in part (a), how heavy an instrument package could they carry?

- The new radius of the balloon - "R" -is five times what was calculated in part (a):

- Apply the Newton's equilibrium conditions in the vertical direction on the balloon with the addition of downward weight of load "WL":

                     Fb - W - WL = 0

                     WL = Fb - W

                     mL*g = ρ*g*4/3 πR^3 - 4*σ*g*πR^2      

Where,          mL : The mass of load due to instrument package

                     mL =  ρ*4/3 πR^3 - 4*σ*πR^2

                     mL = 0.0154*4/3*π*(5*0.974)^3 - 4*(0.005)*π*(5*0.974)^2    

                     mL = 7.45 - 1.45

                     mL = 5.96 kg   ..... Answer                      

6 0
3 years ago
Read 2 more answers
THe Wilson cloud chamber is used to study the appearance of individual atoms?
bezimeni [28]

Answer:

The Wilson cloud chamber is used to study the direction, speed, and distance of charged particles. Explanation; ... The Wilson cloud chamber works by producing a super-saturated vapor, as explained by florin.

Explanation:

I hope it's help u

3 0
3 years ago
Other questions:
  • A spring with spring constant 13.1 N/m hangs from the ceiling. A ball is suspended from the spring and allowed to come to rest.
    11·1 answer
  • Things that are _______________________ cannot be broken down by living organisms.
    13·1 answer
  • Which of the following should be considered when analyzing the results of a scientific experiment? the hypothesis, but only if i
    15·2 answers
  • The __________ behind a vehicle is one of the most common causes of collisions while ____________.
    13·1 answer
  • The following images show the four terrestrial planets in our solar system (not to scale). Rank these planets from left to right
    10·1 answer
  • Why does the moon cycle from new moon to full moon?
    10·1 answer
  • What genetic information cannot be obtained from the punnett square?
    7·1 answer
  • Find the force necessary to start the crate moving, given that the mass of the crate is 32 kg and the coefficient of static fric
    7·1 answer
  • How much power is required to light a lightbulb at 100V of voltage when the lightbulb has a resistance of 500 Ohms?
    5·1 answer
  • If a car is traveling forward at 15 m/s, how fast will it be going in 1.2 seconds if the acceleration is
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!