Which transformations can be used to map a triangle with vertices A(2, 2), B(4, 1), C(4, 5) to A’(–2, –2), B’(–1, –4), C’(–5, –4
Romashka [77]
The triangles ABC and A'B'C' are shown in the diagram below. The transformation is a reflection in the line

. This is proved by the fact that the distance between each corner ABC to the mirror line equals to the distance between the mirror line to A'B'C'.
Answer: You find midpoint by adding the two x values together and dividing by 2, then adding the two y values together and dividing by two.
Answer:

Step-by-step explanation:
we know that
The standard equation of a horizontal parabola is equal to

where
(h,k) is the vertex
(h+p,k) is the focus
In this problem we have
(h,k)=(0,0) ----> vertex at origin
(h+p,k)=(-4,0)
so
h+p=-4
p=-4
substitute the values

