You want to divide by avagadros number (6.22 x 10^23). This will cancel the atoms unit and give moles, moles of Iridium. Now you want to calculate the atomic mass of Iridium which is in units of grams per mole. Multiply these two numbers and the moles will cancel giving you grams.
Setting up a dimension analysis type of thing helps tremendously. See what you have to cancel in order to get what you want. We canceled the atoms, then we canceled the moles, and then we got grams.
Answer:
1. 0.0637 moles of nitrogen.
2. The partial pressure of oxygen is 0.21 atm.
Explanation:
1. If we assume ideal behaviour, we can use the Law of ideal gases to find the moles of nitrogen, considering that air composition is mainly nitrogen (78%), oxygen (21%) and argon (1%):
2. Now, in order to find he partial pressure of oxygen we need to find the total moles of air, and then the moles of oxygen. Then, we use these results to determine the molar fraction of oxygen, to multiply it with total pressure and get the partial pressure of oxygen as follows:
As you see, the molar fraction and volume fraction are the same because of the assumption of ideal behaviour.
A fluorine atom has seven valence electrons. ... Carbon will then have five valence electrons (its four and the one its sharing with fluorine). Covalently sharing two electrons is also known as a “single bond.” Carbon will have to form four single bonds with four different fluorine atoms to fill its octet.
Actual yield over theoretical yield, then multiply by 100
The answer is Al.
If it is a main group element with 3 electrons in its Lewis dot structure, it must be in group 3A. If it is in the 3p orbital section, then it must be in period 3, since the p orbital is a valence orbital and the number that preceeds it is the principal quantum number. Therefore, your answer is the element in period 3 and group 3A, which is aluminum.