We have the following expression:
17 ^ (3/5)
We rewrite the expression.
We have then:
a ^ root (17 ^ b)
Where, for this case:
a = 5
b = 3
Substituting:
5 ^ root (17 ^ 3)
Answer:
the value of B is:
b = 3
Answer: a,c,f (4^3, 8^2, 2^6)
Step-by-step explanation:
47+ 30 is 77 so def is 77 and 103 is deg. and
Answer:
A. neither a relation nor a function
Step-by-step explanation:
A relation between two sets is a collection of ordered pairs containing one object from each set.
A function is a relation from a set of inputs to a set of possible outputs where each input is related to exactly one output.
Quadratic equations are not functions. Quadratic equations are not a function because they touch two points that is on the same y-axis. Furthermore, if they are two points that have the same x axis, then it is not a function either. It doesn't have a relation either because there are two outputs that are the same by the x axis for 3x^2 - 9x + 20. Those are x = 1 and x = 2. For proof, you can plug both of them in.
3(1)^2 - 9(1) + 20 = 14
3(2)^2 - 9(2)+ 20 = 14
Both answers have 14 as the y-axis/output. This proves that this quadratic equation is not a relation either. Therefore, this equation is neither a relation nor a function.
The axis of symmetry of f(x) is:
On a coordinate plane, a vertical dashed line at (2, 0) is parallel to
the y-axis ⇒ 2nd answer
Step-by-step explanation:
The vertex form of a quadratic function is f(x) = a(x - h)² + k, where
- (h , k) are the coordinates of its vertex point
- The axis of symmetry of it is a vertical line passes through (h , 0)
- The minimum value of the function is y = k at x = h
∵ f(x) = a(x - h)² + k
∵ f(x) = (x - 2)² + 1
∴ a = 1 , h = 2 , k = 1
∵ The axis of symmetry of f(x) is a vertical line passes through (h , 0)
∴ The axis of symmetry of f(x) is a vertical line passes through (2 , 0)
∵ Any vertical line is parallel to y-axis
∴ The axis of symmetry of f(x) is a vertical line parallel to y-axis and
passes through (2 , 0)
The axis of symmetry of f(x) is:
On a coordinate plane, a vertical dashed line at (2, 0) is parallel to
the y-axis
Learn more:
You can learn more about quadratic function in brainly.com/question/9390381
#LearnwithBrainly