Let <em>X</em> be the random variable representing the amount (in grams) of nicotine contained in a randomly chosen cigarette.
P(<em>X</em> ≤ 0.37) = P((<em>X</em> - 0.954)/0.292 ≤ (0.37 - 0.954)/0.292) = P(<em>Z</em> ≤ -2)
where <em>Z</em> follows the standard normal distribution with mean 0 and standard deviation 1. (We just transform <em>X</em> to <em>Z</em> using the rule <em>Z</em> = (<em>X</em> - mean(<em>X</em>))/sd(<em>X</em>).)
Given the required precision for this probability, you should consult a calculator or appropriate <em>z</em>-score table. You would find that
P(<em>Z</em> ≤ -2) ≈ 0.0228
You can also estimate this probabilty using the empirical or 68-95-99.7 rule, which says that approximately 95% of any normal distribution lies within 2 standard deviations of the mean. This is to say,
P(-2 ≤ <em>Z</em> ≤ 2) ≈ 0.95
which means
P(<em>Z</em> ≤ -2 or <em>Z</em> ≥ 2) ≈ 1 - 0.95 = 0.05
The normal distribution is symmetric, so this means
P(<em>Z</em> ≤ -2) ≈ 1/2 × 0.05 = 0.025
which is indeed pretty close to what we found earlier.
Yes Because 7,785 is greater than 7,742.
The experimental probability that in a group of 4 students, at least one of them has brown eyes is 95%.
<h3>
What is Experimental Probability?</h3>
Experimental probability is a probability that is determined on the basis of a series of experiments. A random experiment is done and is repeated many times to determine their likelihood and each repetition is known as a trial. The experiment is conducted to find the chance of an event to occur or not to occur.
Here , Favorable Outcome = 19
Total outcomes = 20
Probability = Favorable Outcome/ Total Outcome
= 19 / 20
= 95%
Thus, the experimental probability that in a group of 4 students, at least one of them has brown eyes is 95%.
Learn more about Experimental Probability from:
brainly.com/question/15729871
#SPJ1
Answer:
It's 1/6, hope this helps!