Answer:
Kf > Ka = Kb > Kc > Kd > Ke
Explanation:
We can apply
E₀ = E₁
where
E₀: Mechanical energy at the beginning of the motion (top of the incline)
E₁: Mechanical energy at the end (bottom of the incline)
then
K₀ + U₀ = K₁ + U₁
If v₀ = 0 ⇒ K₀
and h₁ = 0 ⇒ U₁ = 0
we get
U₀ = K₁
U₀ = m*g*h₀ = K₁
we apply the same equation in each case
a) U₀ = K₁ = m*g*h₀ = 70 Kg*9.81 m/s²*8m = 5493.60 J
b) U₀ = K₁ = m*g*h₀ = 70 Kg*9.81 m/s²*8m = 5493.60 J
c) U₀ = K₁ = m*g*h₀ = 35 Kg*9.81 m/s²*4m = 1373.40 J
d) U₀ = K₁ = m*g*h₀ = 7 Kg*9.81 m/s²*16m = 1098.72 J
e) U₀ = K₁ = m*g*h₀ = 7 Kg*9.81 m/s²*4m = 274.68 J
f) U₀ = K₁ = m*g*h₀ = 105 Kg*9.81 m/s²*6m = 6180.30 J
finally, we can say that
Kf > Ka = Kb > Kc > Kd > Ke
Answer: 
Explanation:
Given
Radius of flywheel is 
Angular acceleration 
For no change in radius, tangential acceleration is given as

Insert the values

Answer:
The tangential velocity of a rotating object is:
v = r*w
where r is the radius, and w is the angular velocity.
w = 2*pi*f
where f is the frequency.
We know that the record plater does 11 revolutions in 20 seconds, then it does:
11 rev/20s = 0.55 rev/s = f
then we have:
w = 2*pi*0.55 s^-1 = 2*3.14*0.55 s^-1 = 3.454 s^-1
The radius of a record player is really variable, it is around 10 inches, so i will use r = 10in, which is the rotating part of the record player.
then the tangential velocity is:
v = 10in*3.454 s^-1 = 34.54 in/s
Answer:
27.44 J
Explanation:
We can find the energy at the top of the slide by using the potential energy equation:
At the top of the slide, the swimmer has 0 kinetic energy and maximum potential energy.
The swimmer's mass is given as 7.00 kg.
The acceleration due to gravity is 9.8 m/s².
The (vertical) height of the water slide is 0.40 m.
Substitute these values into the potential energy equation:
- PE = (7.00)(9.8)(0.40)
- PE = 27.44
Since there is 0 kinetic energy at the top of the slide, the total energy present is the swimmer's potential energy.
Therefore, the answer is 27.44 J of energy when the swimmer is at the top of the slide.