Answer:
Solvent
Explanation:
When one substance dissolves into another, a solution is formed. A solution is a homogeneous mixture consisting of a solute dissolved into a solvent
Atom <span>Appears in these related concepts: Early Ideas about Atoms, Stable Isotopes, and Atomic Theory of Matter</span>balanced equation <span>Appears in these related concepts: Effect of a Common Ion on Solubility, Reaction Stoichiometry, and Mole-to-Mole Conversions</span>bond <span>Appears in these related concepts: Factors Affecting the Price of a Bond, Current Maturities of Long-Term Debt, and Preferred Stock</span>chemical reaction <span>Appears in these related concepts: Periodic Table Position and Electron Configuration, Free Energy Changes for Nonstandard States, and Physical and Chemical Changes to Matter</span>chemistry <span>Appears in these related concepts: Description of the Hydrogen Atom, Mass-to-Mole Conversions, and General Trends in Chemical Properties</span>element <span>Appears in these related concepts: Development of the Periodic Table, Elements and Compounds, and The Periodic Table</span>energy <span>Appears in these related concepts: Surface Tension, Energy Transportation, and Introduction to Work and Energy</span>gas <span>Appears in these related concepts: Oxidation Numbers of Metals in Coordination Compounds, Irreversible Addition Reactions, and Microstates and Entropy</span>isolated system <span>Appears in these related concepts: Conservation of Mechanical Energy, Internal Energy, and Comparison of Enthalpy to Internal Energy</span>liquid <span>Appears in these related concepts: Overview of Atomic Structure, Types of Synthetic Organic Polymers, and Three States of Matter</span>matter <span>Appears in these related concepts: Physical and Chemical Properties of Matter, Introduction: Physics and Matter, and The Study of Chemistry</span>mole <span>Appears in these related concepts: Avogadro's Number and the Mole, Molar Mass of Compounds, and Concept of Osmolality and Milliequivalent</span>solid <span>Appears in these related concepts: Extractive Metallurgy, Metagenomics, and Some Polycyclic Heterocycles</span>system <span>Appears in these related concepts: Definition of Management, <span>Local, regional, national, international, and global marketers </span>, and Additional cost and energy saving suggestions for pumps</span>
<span />
N = 3.2 moles, T = 50 + 273 = 323 K, P = 101.325 kPa, R = 8.314 L.kPa/K.mol
PV = nRT
V = nRT / P substituting.
V = (3.2 mole)(8.314 L.kPa/K.mol )(323 K) / (<span>101.325 kPa)
That is the answer, but it is not among the options you provided. Check your options properly.</span>
Answer:Sample Absorbance (625 nm)
A 0.536
B 0.783
C 0.045
Therefore, I will use these data to solve your question. If you have other absorbances values, just follow my steps and plug in different numbers.
First, we see 1 mole of NH3 gives 1 mole product.
In B moles of NH3 = moles of NH3 in A + (5.5 x10^-4 x2.5/1000) = 1.375 x10^6 + mA
( mA = moles of NH3 in A) vol of B = 25 = vol of A
now A = el C = eC ( since l = 1cm)
Because, n net absorbance due to complex blank absorbance must be removed.
Here A(A) = 0.536 - 0.045 = 0.491 , A(B) = 0.783 - 0.045 = 0.738
(you can plug in different numbers in this step)
A2/A1 = C2/C1 , A(B)/A(A) = (1.375x10^-6 +mA)/(mA) = 0.738/0.491
So, mA = 2.733 x 10^-6 = moles of NH3 in A (Lake water)
Hence [NH3] water ( 2.733 x10^-6 ) x 1000/25 = 1.093 x 10^-4 M
Lake water vol = 10 ml out of 25,
Concentration of ammonia in lake water = 2.733 x10^-6 x 1000/10 = 2.733 x 10^-4 M
Then, A = 0.491 = e x 1 x 1.093 x10^-4
e = 4492 M-1cm-1
Explanation:
Answer:
The ΔHrxn for the above equation = 179 kJ/mol
Explanation:
The reaction bond enthalpies are for the reactant;
3 × N-H = 3 × 390 = 1,170 kJ/mol
2 × O=O = 2 × 502 = 1004 kJ/mol
The reaction bond enthalpies are for the product;
3 × N-O = 3 × 201 = 603 kJ/mol
3 × O-H = 3 × 464 = 1,392 kJ/mol
The ΔHrxn for the above equation is therefore;
ΔHrxn = 1,170 + 1,004 - (603 + 1,392) = 179 kJ/mol