Answer: The observing friend will the swimmer moving at a speed of 0.25 m/s.
Explanation:
- Let <em>S</em> be the speed of the swimmer, given as 1.25 m/s
- Let
be the speed of the river's current given as 1.00 m/s.
- Note that this speed is the magnitude of the velocity which is a vector quantity.
- The direction of the swimmer is upstream.
Hence the resultant velocity is given as,
= S — S 0
= 1.25 — 1
= 0.25 m/s.
Therefore, the observing friend will see the swimmer moving at a speed of 0.25 m/s due to resistance produced by the current of the river.
<h2>Hey there!</h2>
The Force "F" applied on the unit electric charge "q" at a point describes the electric field.
<h3>☆ Formula to find electric charge:</h3>
<h2>Hope it helps </h2>
Answer:
The surface gravity is inversely proportional to the square of the radius of the planet
Explanation:
The gravity at the surface of a planet is given by:

where
G is the gravitational constant
M is the mass of the planet
R is the radius of the planet
We see from the formula that the surface gravity is inversely proportional to the square of the radius of the planet, R.
At the Earth's surface, the value of the surface gravity is approximately 9.81 m/s^2.
(20 miles) x ( 1/45 hour/mile) =
(20/45) (hour) = <em>
4/9 hour = </em>26 minutes 40 seconds