Answer:
The average force the golf club exerts on the ball is 600 N
Explanation:
Newton's second law of motion states that force, F, is directly proportional to the rate of change of momentum produced
F = m× (v₂ - v₁)/(Δt)
The given parameters of the motion of the ball are;
The mass of the ball, m = 45 g = 0.045 kg
The initial velocity of the ball, v₁ = 0 m/s
The speed with which the ball was hit by the golfer, v₂ = 40 m/s
The duration of contact between the golf club and the ball, Δt = 3 ms = 0.003 seconds (s)
By Newton's law of motion, the average force, 'F', which the golf club exerts on the ball is therefore, given as follows;
F = 0.045 kg × (40 m/s - 0 m/s)/(0.003 s) = 600 N
The average force the golf club exerts on the ball = F = 600 N.
Increasing the temperature causes an increase in the average kinetic energy of the particles of a material.
<h3>
What is average kinetic energy of particles?</h3>
The average kinetic energy of particles is the energy possessed by particles due to their constant motion.
The constant motion of particles occurs due to the energy acquired by the particles, when the temperature of the particles increases, the average kinetic energy increases which in turn increases the speed of the particles.
Thus, we can conclude that, increasing the temperature causes an increase in the average kinetic energy of the particles of a material.
Learn more about average kinetic energy here: brainly.com/question/9078768