Answer: D. 5cm
Explanation:
Given the following :
Focal length (f) = - 6.0 cm
Height of object = 15.0cm
Distance of object from mirror (u) = 12.0cm
Height of image produced by the mirror =?
Firstly, we calculate the distance of the image from the mirror.
Using the mirror formula
1/f = 1/u + 1/v
1/v = 1/f - 1/u
1/v = 1/-6 - 1/12
1/v = - 1/6 - 1/12
1/v = (- 2 - 1) / 12
1/v = - 3 / 12
v = 12 / - 3
v = - 4
Using the relation :
(Image height / object height) = (- image distance / object distance)
Image height / 15 = - (-4) / 12
Image height / 15 = 4 / 12
Image height = (15 × 4) / 12
Image height = 60 / 12
Image height = 5cm
Answer:
2.64N
Explanation:
Force = mass * acceleration
Given
mass = 4kg
distance = 1.9m
Time t = 2.4s
Get the acceleration using the equation of motion
S = ut + 1/2at²
1.9 = 0 + 1/2a(2.4)²
1.9 = 5.76a/2
1.9 = 2.88a
a = 1.9/2.88
a = 0.66m/s²
Get the magnitude of the force
Force = 4 * 0.66
Force = 2.64N
Hence the net force acting on the fish is 2.64N
the answer wil be 2.36+3.38+0.355+1.06=7.155
Answer:
a) 15.49
b) Opposite to the ball's initial velocity
c) 258.16N
Explanation:
a)

b)
Since the player is kicking the ball in the opposite direction to which it came, the impulse is being directed opposite to the ball's initial velocity.
c)

Hope this helps!
Answer:
<em>It matters because crystalline and amorphous materials have different properties. The arrange affects the melting point (defined in crystals and a larger range in amorphous) and shape (geometrical in crystals, no geometrical in amorphous). </em>
Explanation:
The particles that compose a solid material are held in place by strong tractive forces between them when we analyze solids we consider the position of the atoms (molecules or ions) rather than their motion (which is important in liquids and gases). This positioning can be arranged in two general ways:
- Crystalline solids have internal structures that in turn lead to distinctive flat surfaces or face, these faces intersect at angles that are characteristic of the substance, crystals tend to have sharp, well defined and high melting points because of the same distance from the same number and type of neighbors. They generally have geometric shapes, some examples are diamonds, metals, salts.
- Amorphous solids produce irregular or curved surfaces when broken and they have poorly defined patterns when exposed to x rays because of their irregular array. In contrast with crystal solids, amorphous solids soften over a wide temperature range due to the different amounts of thermal energy needed to overcome different interactions. Some examples of these solids are gels, plastics, and some polymers.
I hope you find this information useful and interesting! Good luck!