1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mandarinka [93]
3 years ago
8

How how would scientist describe a sunset

Physics
1 answer:
Scilla [17]3 years ago
3 0

a creamy texture of orange  ,yellow ,pink, red,and purple. Because it is when the sun is goinig down and the sun reflects on stuff which makes it the colors it does for a sun set
You might be interested in
Can a goalkeeper at his goal kick a soccer ball into the opponent’s goal without the ball touching the ground? The distance will
zmey [24]

The goalkeeper at his goal cannot kick a soccer ball into the opponent’s goal without the ball touching the ground

Explanation:

Consider the vertical motion of ball,

We have equation of motion v = u + at

     Initial velocity, u  = u sin θ

     Final velocity, v =  0 m/s    

     Acceleration = -g

     Substituting

                      v = u + at  

                      0 = u sin θ - g t

                      t=\frac{usin\theta }{g}

This is the time of flight.

Consider the horizontal motion of ball,

        Initial velocity, u =  u cos θ

        Acceleration, a =0 m/s²  

        Time, t=\frac{usin\theta }{g}  

     Substituting

                      s = ut + 0.5 at²

                      s=ucos\theta \times \frac{usin\theta }{g}+0.5\times 0\times (\frac{usin\theta }{g})^2\\\\s=\frac{u^2sin\theta cos\theta}{g}\\\\s=\frac{u^2sin2\theta}{2g}

This is the range.

In this problem

              u = 30 m/s

              g = 9.81 m/s²

              θ = 45° - For maximum range

Substituting

               s=\frac{30^2\times sin(2\times 45)}{2\times 9.81}=45.87m

Maximum horizontal distance traveled by ball without touching ground is 45.87 m, which is less than 95 m.

So the goalkeeper at his goal cannot kick a soccer ball into the opponent’s goal without the ball touching the ground

6 0
3 years ago
Help me answer this question and get yourself some points!
Marrrta [24]

Answer:

A×B=C×D

500×0.5=250×X

250=250×X

X=250/250=1

X=1 m

Explanation:

note: if the force plus two, the distance will be half.

4 0
2 years ago
Two resistances, R1 and R2, are connected in series across a 9-V battery. The current increases by 0.450 A when R2 is removed, l
Rina8888 [55]

Answer:

a. R1 = 0.162 Ω

b. R2 = 0.340 Ω

Explanation:

Since the resistors R1 and R2 are connected in series, the current flowing through them when the 9 V battery is applied is 9/R1 + R2.

When the current increases by 0.450 A wen only R1 is in the circuit, the current is

9/R1 + R2 + 0.450 A = 9/R1       (1)

When the current increases by 0.225 A when only R2 is in the circuit, the current is

9/R1 + R2 + 0.225 A = 9/R2       (2)

equation (1) - (2) equals

9(1/R1 - 1/R2) = 0.450 A - 0.225

9(1/R1 - 1/R2) = 0.125

(1/R1 - 1/R2) = 0.125 A/9 = 0.0138

1/R1 = 0.0138 + 1/R2

R1 = R2/(1 + 0.0138R2)     (3)

From (1)

9/R1 - 9/R1 + R2 = 0.450 A

9R2/[R1(R1 + R2)] = 0.450 A

R2/[R1(R1 + R2)] = 0.450 A/9 = 0.5

R2/[R1(R1 + R2)] = 0.5    (4)

From (3) R2/R1 = (1 + 0.0138R2) and from (4) R2/R1 = 0.5(R1 + R2). So,

(1 + 0.0138R2) = 0.5(R1 + R2)

0.5R1 + 0.5R2 = 1 + 0.0138R2

0.5R1 = 1 + 0.0138R2 - 0.5R2

0.5R1 = 1 - 0.4862R2        (5)

Substituting (3) into (5) we have

0.5R2/(1 + 0.0138R2) = 1 - 0.4862R2

R2 = (1 + 0.0138R2)(1 - 0.4862R2)

R2 = 1 - 0.4724R2 - 0.0067R2²

Collecting like terms, we have

0.0067R2² + 0.4724R2 + R2 - 1 = 0

0.0067R2² + 1.4724R2 - 1 = 0

Using the quadratic formula,

R_{2} = \frac{-1.4724 +/-\sqrt{(1.4724)^{2} - 4 X 0.0067 X -1} }{2 X 0.0067}  \\= \frac{-1.4724 +/-\sqrt{2.1680 + 0.0268} }{0.0268}\\= \frac{-1.4724 +/-\sqrt{2.1948} }{0.0268}\\= \frac{-1.4724 +/- 1.4815 }{0.0268}\\= \frac{-1.4724 + 1.4815 }{0.0268} or \frac{-1.4724 - 1.4815 }{0.0268}\\= \frac{0.0091 }{0.0268} or \frac{-2.9539}{0.0268}\\= 0.340 or -110.22

We choose the positive answer.

So R2 = 0.340 Ω

From (5)

R1 = 0.5 - 0.9931R2

   = 0.5 - 0.9931 × 0.340

   = 0.5 - 0.338

   = 0.162 Ω

a. R1 = 0.162 Ω

b. R2 = 0.340 Ω

5 0
2 years ago
Julio hit a baseball. What caused the ball to change direction at the time of impact?
WARRIOR [948]
The answer is c. the force of his swing

At the time of the impact, there is a collision between two bodies moving in opposite directions. 

The force exerted on the ball causes the change of velocity.
7 0
3 years ago
Read 2 more answers
For Part A, Sebastian decided to use the copper cylinder. How would the magnitude of his q and ∆H compare if he were to redo Par
Vitek1552 [10]

The magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.

The given parameters;

  • <em>initial temperature of metals, =  </em>T_m<em />
  • <em>initial temperature of water, = </em>T_i<em> </em>
  • <em>specific heat capacity of copper, </em>C_p<em> = 0.385 J/g.K</em>
  • <em>specific heat capacity of aluminum, </em>C_A = 0.9 J/g.K
  • <em>both metals have equal mass = m</em>

The quantity of heat transferred by each metal is calculated as follows;

Q = mcΔt

<em>For</em><em> copper metal</em><em>, the quantity of heat transferred is calculated as</em>;

Q_p = (m_wc_w + m_pc_p)(T_m - T_i)\\\\Q_p = (T_m - T_i)(m_wc_w ) + (T_m - T_i)(m_pc_p)\\\\Q_p = (T_m - T_i)(m_wc_w ) + 0.385m_p(T_m - T_i)\\\\m_p = m\\\\Q_p = (T_m - T_i)(m_wc_w ) + 0.385m(T_m - T_i)\\\\let \ (T_m - T_i)(m_wc_w )  = Q_i, \ \ \ and \ let \ (T_m- T_i) = \Delta t\\\\Q_p = Q_i + 0.385m\Delta t

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>copper metal</em>;

\Delta H = Q_p - Q_i\\\\\Delta H = (Q_i + 0.385m \Delta t) - Q_i\\\\\Delta H = 0.385 m \Delta t

<em>For </em><em>aluminum metal</em><em>, the quantity of heat transferred is calculated as</em>;

Q_A = (m_wc_w + m_Ac_A)(T_m - T_i)\\\\Q_A = (T_m -T_i)(m_wc_w) + (T_m -T_i) (m_Ac_A)\\\\let \ (T_m -T_i)(m_wc_w)  = Q_i, \ and \ let (T_m - T_i) = \Delta t\\\\Q_A = Q_i \ + \ m_Ac_A\Delta t\\\\m_A = m\\\\Q_A = Q_i \ + \ 0.9m\Delta t

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>aluminum metal </em><em>;</em>

\Delta H = Q_A - Q_i\\\\\Delta H = (Q_i + 0.9m\Delta t) - Q_i\\\\\Delta H = 0.9m\Delta t

Thus, we can conclude that the magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.

Learn more here:brainly.com/question/15345295

6 0
2 years ago
Other questions:
  • En la Tierra, una balanza muestra que tu peso es 585 N.
    6·1 answer
  • What kind of charge does an object have when it has given away electrons?
    9·2 answers
  • A compound machine is sued to lift a car. If you apply a force of 60 N to the machine, it lifts the car with a force of 550 N.
    7·2 answers
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!! I CANNOT RETAKE THIS!!
    10·2 answers
  • Interference is a condition that occurs when _____.
    6·2 answers
  • Suppose the total momentum of two masses before a collision is 100 kg m/s. What is the total momentum of the two masses after th
    13·1 answer
  • State Newton's three laws of motion in your own words and give an example for each one that helps to explain it in everyday life
    6·1 answer
  • The magnitude of a force is:
    7·1 answer
  • 5) Unlike the five big mass extinctions in the geological record, the current wave of extinctions is
    11·2 answers
  • which properties change the composition of a substance? A) physical properties B) neither chemical nor physical properties C) ch
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!