A group of individuals living in a particular geographic area is termed population.
In quantum mechanics, a central concept is that both matter and <u>energy</u> are alternate forms of the same entity and therefore both exhibit dual characteristics of particles and of <u>waves</u>.
Matter can be defined as anything that has mass and is able to occupy space.
Thus, any physical object or substance that is found on Earth is typically composed of matter.
Similarly, energy is highly affected by the mass of a any physical object or substance just like matter,
Hence, both energy and matter are known to be made up of atoms and as a result of this fact, exhibit dual characteristics of particles and of waves.
A wave can be defined as a disturbance in a medium that progressively transports energy from a source location to another location without the transportation of matter.
In conclusion, this central concept makes it easier for us to better understand the behavior of tiny particles such as electrons.
Find more information: brainly.com/question/17203857
Answer:
0.002833 sec
Explanation:
Speed of light in vacuum is 
Given distance = 850 km = 850×1000=850000 m
We have to calculate the time that light take to travel the distance 850 km
Time 
So the time taken by light to travel 850 km is 0.002833 sec
Answer: The final temperature is 470K
Explanation: Using the relation;
Q= ΔU +W
Given, n = 2mol
Initial temperature T1= 345K
Heat =Q= 2250J
Workdone=W=-870J(work is done on gas)
T2 =Final temperature =?
ΔU =3/2nR(T2-T1)
ΔU=3/2 × 2 ×8.314 (T2 - 345)
ΔU=24.942(T2-345)
Therefore Q = 24.942(T2-345)+ (-870)
2250=24.942(T2-345)+ (-870)
125.09=(T2-345)
T2 =470K
Therfore the final temperature is 470K
Answer:
Option d is correct.
Explanation:
We know , resistance of a body is directly proportional to its length and inversely proportional to its area.
( Here,
is constant dependent on object material )
Writing
also :
( since they are of same material therefore,
is same.)
Now , if
.
Then 
Therefore, option d. is correct.
Hence, this is the required solution.