I assume the 100 N force is a pulling force directed up the incline.
The net forces on the block acting parallel and perpendicular to the incline are
∑ F[para] = 100 N - F[friction] = 0
∑ F[perp] = F[normal] - mg cos(30°) = 0
The friction in this case is the maximum static friction - the block is held at rest by static friction, and a minimum 100 N force is required to get the block to start sliding up the incline.
Then
F[friction] = 100 N
F[normal] = mg cos(30°) = (10 kg) (9.8 m/s²) cos(30°) ≈ 84.9 N
If µ is the coefficient of static friction, then
F[friction] = µ F[normal]
⇒ µ = (100 N) / (84.9 N) ≈ 1.2
Answer:
As voltage increases, current increases and resistance stays the same
.
Explanation:
Ohm's law gives the relationship between the voltage, resistance, and current. The mathematical form of Ohm's law is given by :

R is resistance
I is current
V is voltage
So, as voltage increases, current increases and resistance stays the same. The correct option is (A).
Choices 'a', 'c', and 'd' are true.
In choice 'b', I'm not sure what it means when it says that masses
are 'balanced'. To me, masses are only balanced when they're on
a see-saw, or on opposite ends of a rope that goes over a pulley.
Maybe the statement means that the mass of the nucleus and the
mass of the electron cloud are equal. This is way false. It takes
more than 1,800 electrons to make the mass of ONE proton or
neutron, and the most complex atom in nature only has 92 electrons
in it. So there's no way that the masses of the nucleus and the electrons
in one atom could ever be anywhere near equal.
Answer:
A new substance was formed
Explanation:
According to this question, a shiny and flexible metal called Magnesium (Mg) is burnt in air to produce a white powder that has no shiny or flexible properties, however, has more weight than the magnesium metal itself.
This is possible because a CHEMICAL CHANGE has occured, hence, a new substance has been formed. The formation of a new substance during the burning process (chemical reaction), induced the increase in mass.
Solution :
Frequency may be defined as the number of observation or number of waves that is taken in per unit time. The unit of frequency is Hertz or Hz.
It is given that :
Successive harmonic frequencies, f = 52.2 Hz
and f' = 60.9 Hz
Therefore, fundamental frequency, F = f' - f
F = 60.9 - 52.2
F = 8.7 Hz
Therefore the string which is fixed at both the ends forms all the harmonics.