Any charged object can<span> exert the force upon other objects ... i think tell me if im right</span>
Answer:
1.0x10^-4
Explanation:
First, in order to do this, we need to calculate the volume of 1 simple atom of Ar. Using the formula of the volume of a sphere we have the following
Converting A to cm:
0.97 * 1x10^-8 = 9.7x10^-9 cm
Now the volume:
V = 4/3π(9.7x10^-9)³
V = 3.82x10^-24 cm³
We know that 1 cm³ is 1 mL, and 1 L is 1000 mL so:
V = 3.82x10^-24 mL / 1000 = 3.82x10^-27 L
Now, using avogadro's number, we should get the total volume of all atoms of Ar so:
3.82x10^-27 * 6.02x10^23 = 2.3x10^-3 L
Finally, at STP the volume of an ideal gas is 22.4 L so:
2.3x10^-3 / 22.4 = 1.03x10^-4
With two significant figure, it would be 1.0x10^-4
Try the same search on a different data base.
Answer:
Explanation:
Given
mass of chair m=21 kg
Force required to set chair in motion is 175 N
Once the chair is in motion 137 N is require to move it with constant velocity
i.e. 175 N is the amount of force needed to just overcome static friction and 137 is the kinetic friction force
thus

where
is the coefficient of static friction and N is Normal reaction




