Answer:
a) 75.5 degree relative to the North in north-west direction
b) 309.84 km/h
Explanation:
a)If the pilot wants to fly due west while there's wind of 80km/h due south. The north-component of the airplane velocity relative to the air must be equal to the wind speed to the south, 80km/h in order to counter balance it
So the pilot should head to the West-North direction at an angle of

relative to the North-bound.
b) As the North component of the airplane velocity cancel out the wind south-bound speed. The speed of the plane over the ground would be the West component of the airplane velocity, which is

Answer:
60
Explanation:
Translation -
A book weighing 12 N is balanced on a table. Knowing that the static friction coefficient is 0.5, how much is the friction force worth?
Friction force is
f = u * n
f = 0.5 * 12N
f = 60
Answer:
here north are not vector option b hope ur help
-- The acceleration due to gravity is 32.2 ft/sec² . That means that the
speed of a falling object increases by an additional 32.2 ft/sec every second.
-- If dropped from "rest" (zero initial speed), then after falling for 4 seconds,
the object's speed is (4.0) x (32.2) = <em>128.8 ft/sec</em>.
-- 128.8 ft/sec = <em>87.8 miles per hour</em>
Now we can switch over to the metric system, where the acceleration
due to gravity is typically rounded to 9.8 meters/sec² .
-- Distance = (1/2) x (acceleration) x (time)²
D = (1/2) (9.8) x (4)² =<em> 78.4 meters</em>
-- At 32 floors per 100 meters, 78.4 meters = dropped from the <em>25th floor</em>.
The 5 points are certainly appreciated, but I do wish they were Celsius points.