<span>An ax is an example of a wedge. The correct option among all the options that are given in the question is the second option or option "b". The other choices given in the question are incorrect and can be easily neglected. I hope that this is the answer that has actually come to your great help.</span>
(a)
consider the motion of the tennis ball. lets assume the velocity of the tennis ball going towards the racket as positive and velocity of tennis ball going away from the racket as negative.
m = mass of the tennis ball = 60 g = 0.060 kg
v₀ = initial velocity of the tennis ball before being hit by racket = 20 m/s
v = final velocity of the tennis ball after being hit by racket = - 39 m/s
ΔP = change in momentum of the ball
change in momentum of the ball is given as
ΔP = m (v - v₀)
inserting the above values
ΔP = (0.060) (- 39 - 20)
ΔP = - 3.54 kgm/s
hence , magnitude of change in momentum : 3.54 kgm/s
Answer:
4.9 x 10^-19 J, 2.7 x 10^-19 J
Explanation:
first wavelength, λ1 = 410 nm = 410 x 10^-9 m
Second wavelength, λ2 = 750 nm = 750 x 10^-9 m
The relation between the energy and the wavelength is given by
E = h c / λ
Where, h is the Plank's constant and c be the velocity of light.
h = 6.63 x 10^-34 Js
c = 3 x 10^8 m/s
So, energy correspond to first wavelength
E1 = (6.63 x 10^-34 x 3 x 10^8) / (410 x 10^-9) = 4.85 x 10^-19 J
E1 = 4.9 x 10^-19 J
So, energy correspond to second wavelength
E2 = (6.63 x 10^-34 x 3 x 10^8) / (750 x 10^-9) = 2.652 x 10^-19 J
E2 = 2.7 x 10^-19 J
The molar mass of the sample is equal to the summation of the molar mass of the elementas multiplied by the abundance of the elements by mole. In this case, copper has an abundance of 93.69 percent while zinc has 6.31 percent. In this case, the average molecular weight is 63.67 g/mol