Answer:
it mean "
Hello, what are you roasting"
Explanation:
The energy released in nuclear reactions are far larger than that released in chemical reactions due to the release of nuclear energy from the nucleus.
<h3>Why is the energy released in a reaction?</h3>
Energy is released in a reaction due to the breaking of bonds are well as formation of bonds.
The quantity of energy released in reactions differs according to the reaction type involved.
When compared to chemical reactions, the energy released in nuclear reactions are very much higher because of the changes that occurs in the nucleus of the atoms involving nuclear energy.
The energy, E released in nuclear reactions is given by the formula below:

where m is the mass of the substance and c is the speed of light.
Therefore, the energy released in nuclear reactions are far larger than that released in chemical reactions.
Learn more about nuclear reactions at: brainly.com/question/984564
47% yield.
First, let's determine how many moles of ethane was used and how many moles of CO2 produced. Start with the respective atomic weights.
Atomic weight carbon = 12.0107
Atomic weight hydrogen = 1.00794
Atomic weight oxygen = 15.999
Molar mass C2H6 = 2 * 12.0107 + 6 * 1.00794 = 30.06904 g/mol
Molar mass CO2 = 12.0107 + 2 * 15.999 = 44.0087 g/mol
Moles C2H6 = 8 g / 30.06904 g/mol = 0.266054387 mol
Moles CO2 = 11 g / 44.0087 g/mol = 0.249950578 mol
Looking at the balanced equation, for every 2 moles of C2H6 consumed, 4 moles of CO2 should be produced. So at 100% yield, we should have 0.266054387 / 2 * 4 = 0.532108774 moles of CO2. But we only have 0.249950578 moles, or 0.249950578 / 0.532108774 = 0.46973587 =
46.973587% of what was expected.
Rounding to 2 significant figures gives 47% yield.
The density of a substance tells you the mass of exactly one unit of volume of that substance. This essentially means that density can be used as a conversion factor to go from the mass of a sample to the volume it occupies, or vice versa. This means that every milliliter of the substance has a total mass of 1.50 grams