During cellular respiration, the carbon and hydrogen atoms change partners and bond with oxygen atoms instead. The carbon-hydrogen bonds are replaced by carbon-oxygen and hydrogen-oxygen bonds. As the electrons of these bonds "fall" toward oxygen, energy is released.
Answer:
KOH and H₂SO₄
Explanation:
Neutralization reaction:
It is the reaction in which acid and base react with each other and produce salt and water.
For example:
2KOH + H₂SO₄ → K₂SO₄ + 2H₂O
1. Potassium hydroxide and sulfuric acid react to produce potassium sulfate salt and water.
2. Potassium hydroxide and phosphoric acid react to produce potassium phosphate and water.
H₃PO₄ + 3KOH → K₃PO₄ + 3H₂O
3. Phosphoric acid sodium hydroxide react to produce sodium phosphate and water.
H₃PO₄ + 3NaOH → Na₃PO₄ + 3H₂O
T<span>he Formula for sodium chlorate is- </span>NaClO3.
First we need to find the number of moles that 43.9g of gallium metal is. We can do this by finding the molar weight of gallium and cross-multiplying to cancel out units:

So we are dealing with 0.63 moles of gallium metal.
We can take from the balanced equation that 4 moles of gallium metal will react completely with 3 moles of oxygen gas. We can take this ratio and make a proportion to find the amount of oxygen gas, in moles, that will react completely with 0.63 moles of gallium metal:

Cross multiply and solve for x:


So now we know that 0.47 moles of oxygen gas will react with 43.9g of gallium metal.
Potassium chloride reacts with ammonium nitrate to give ammonium chloride and potassium nitrate.
This is a type of double displacement reaction. The balanced chemical equation can be represented as,

Total ionic equation for this reaction will be,

There is no apparent reaction as this reaction is not accompanied by the formation of a gas or a solid precipitate. We cannot observe any visual reaction as there is not net reaction taking place. All the ions remain as spectator ions.