check the picture below.
make sure your calculator is in Degree mode.
now, Charlie's eyes are 5.2' from the ground, however the distance from his eyes over the horizontal and the ground over the horizontal, is the same, so taking the tan(32°) at his eyes level will give that horizontal distance.
Says shouldn’t Say 18 inches because that is 1 ft 6 inches
Q. How many triangles can be constructed with sides measuring 5 m, 16 m, and 5 m?
Solution:
Here we are given with the sides of the triangle as 5m, 16m and 5.
As the Triangle inequality we know that
The sum of the length of the two sides should be greater than the length of the third side. But this inequality fails here.
Hence no triangle can be made.
So the correct option is None.
Q.How many triangles can be constructed with sides measuring 6 cm, 2 cm, and 7 cm?
Solution:
Here we are given with the sides of the triangle as 6m, 2m and 7m.
As the Triangle inequality we know that
The sum of the length of the two sides should be greater than the length of the third side. The given values follows the triangle inequality.
Hence one triangle can be formed.
So the correct option is one.
The first step in graphing a linear inequality is to graph the linear equality. The equation -x + 4y = -8 is equivalent to 4y = x - 8, which is equivalent to
. This is the equation for the line in slope-intercept form, so the line will have a slope of 1/4 and a y-intercept of -2 (see the first image). Notice that the line is solid, rather than dotted. This represents that points on the line are included in the solution, because the inequality sign is ≥, which is not a strict equality (< or >).
Next, we need to figure out which side to shade. To do so, simply pick any point (I like to use the point (0,0) because it makes the calculations easy) and see whether it satisfies the inequality. If it does, shade the side with that point, and if not, shade the opposite side of the graph.
Here we see that the point (0,0) does satisfy the inequality, since -(0) + 4(0) is 0, and 0 ≥ -8, so the top half of the graph should be shaded (see the second image).