1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
suter [353]
2 years ago
12

Pls help i’ll give brainliest if you give a correct answer!!

Physics
1 answer:
enot [183]2 years ago
4 0

Answer:

the second one

Explanation:

You might be interested in
A pendulum has 895 J of potential energy at the highest point of its swing. How much kinetic energy will it have at the bottom o
LuckyWell [14K]

Newton's law of conservation states that energy of an isolated system  remains a constant. It can neither be created nor destroyed but can be transformed  from one form to the other.

Implying the above law of conservation of energy in the case of pendulum we can conclude that at the bottom of the swing the entire potential energy gets converted to kinetic energy. Also the potential energy is zero at this point.

Mathematically also potential energy is represented as

Potential energy= mgh

Where m is the mass of the pendulum.

g is the acceleration due to gravity

h is the height from the bottom z the ground.

At the bottom of the swing,the height is zero, hence the potential energy is also zero.

The kinetic energy is represented mathematically as

Kinetic energy= 1/2 mv^2

Where m is the mass of the pendulum

v is the velocity of the pendulum

At the bottom the pendulum has the maximum velocity. Hence the kinetic energy is maximum at the bottom.

Also as it has been mentioned energy can neither be created nor destroyed hence the entire potential energy is converted to kinetic energy at the bottom and would be equivalent to 895 J.

7 0
3 years ago
You need to know the height of a tower, but darkness obscures the ceiling. You note that a pendulum extending from the ceiling a
Sonja [21]

Answer:

L=55.9m

Explanation:

The equation for the period of a simple pendulum is:

T=2\pi\sqrt{\frac{L}{g}}

In our case what we know is the period and the acceleration of gravity, and we need to know the length of the pendulum, so we can write:

L=(\frac{T}{2\pi})^2g

Which for our values is:

L=(\frac{15s}{2\pi})^2(9.81m/s^2)=55.9m

6 0
3 years ago
As the wave interacts with a wall, which kind of wave interaction is shown?
kow [346]
 The answer would be a reflection. This is because, t<span>he color of an object is actually the wavelengths of the light reflected while all other wavelengths are absorbed. Color, in this case, refers to the different wavelengths of light in the </span>visible light spectrum<span>perceived by our eyes. The physical and chemical composition of matter determines which wavelength (or color) is reflected.</span>
5 0
3 years ago
Read 2 more answers
What are the highest energy level electrons of an atom called?
Stolb23 [73]
Electrons that are the highest energy level is called Valence Electrons
6 0
3 years ago
Escape velocity of an object from the surface of a planet depends upon:
andrey2020 [161]

Answer:

Escape velocity: Measuring the gravitational strength of an object

The escape velocity is the exact amount of energy you would need to escape the gravitational clutches of an object with mass. Since all objects have mass, they all have a measureable gravitational strength. A good way to think about escape velocity is to think about a deep well (physicists like to think of this as an energy well). If you are at the bottom of the well and want to get out (to escape), you need enough energy to climb out. The deeper the well, the more energy you will have to expend in order to climb to

the top. If you have only enough energy to get half way out, you will eventually fall back to the bottom. The escape velocity is a way of measuring the exact amount of energy needed to reach the lip of the well -- and have no energy left over for walking away.

When a ball is thrown up into the air from the surface of the Earth, it does not have enough energy to escape. So it falls back down. How might we enable the ball to escape? Throw it harder, give it more energy. How hard must we throw it? Just hard enough to get over the top, over the edge of the well.

We can find this energy directly by saying that the kinetic energy of the thrown ball must exactly equal the 'potential energy' of the well. From basic physics we know that the potential energy for an object at a height above a surface is:

Epotential= GMm/R

where

G = Newton's universal constant of gravity = 6.67 x 10-11 N-m2/kg3

M = the mass of the 'attracting object' [the planet] [in units of kg]

m = the mass of the object trying to escape [e.g., me or a ball or a rocket or a molecule] [in kg]

R = the distance between the centers of objects M and m [in units of m]

note: provided we do everything in the same units, we don't have to worry about units

while the kinetic energy we know from above:

Ekinetic=0.5 m v2

where

m = mass of the moving object [in kg]

v = the velocity of object m [in m/sec]

If we set these two energies equal to each other, and solve for v, we find the exact velocity needed to escape from the energy well:

0.5 m v2= GMm/R

v= (2GM/R)0.5

and since this velocity is exactly what is needed to 'escape,' it is called the escape velocity:

vescape= (2GM/R)0.5

Explanation:

that's my all i know

correct me if I'm wrong❤️

7 0
2 years ago
Other questions:
  • You need to repair a broken fence in your yard. The hole in your fence is
    7·1 answer
  • How do i explain to kids how much water on earth is drinkable?
    7·1 answer
  • If you pour equal amounts of scalding hot water into different metallic cups of equal temperature, which cup will heat up the mo
    11·2 answers
  • Interactive Solution 22.43 provides one model for solving this problem. The maximum strength of the earth's magnetic field is ab
    14·1 answer
  • A ball starts to roll up a slope with a slope with a velocity of 5m/s and comes to a stop after rolling 5.0m up the slope. Assum
    10·1 answer
  • A student who takes a multiple-choice test by reading the stem of each item, generating the correct response before looking at t
    15·1 answer
  • A main-sequence star at a distance of 20 pc is barely visible through a certain telescope. The star subsequently ascends the gia
    15·1 answer
  • "1. Which properties make a metal a good material to use for electrical wires? (1 poi
    7·1 answer
  • Work done= ________ transferred
    9·1 answer
  • If the force acting on a body of mass 40 kg is doubled . by how much will the acceleration change
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!