Answer:
U = 0.413 J
Explanation:
the potential energy between two charges q1 and q2 is given by the following formula:
(1)
k: Coulomb's constant = 8.98*10^9 NM^2/C^2
q1: first charge = 4.6 μC = 4.6*10^-6 C
q2: second charge = 1.0 μC*10^-6 C
r: distance between charges = 10.0 cm = 0.10 m
You replace the values of all variables in the equation (1):

Hence, the energy between charges is 0.413 J
Answer:
Vi = 32 [m/s]
Explanation:
In order to solve this problem we must use the following the two following kinematics equations.

The negative sign of the second term of the equation means that the velocity decreases, as indicated in the problem.
where:
Vf = final velocity = 8[m/s]
Vi = initial velocity [m/s]
a = acceleration = [m/s^2]
t = time = 5 [s]
Now replacing:
8 = Vi - 5*a
Vi = (8 + 5*a)
As we can see we have two unknowns the initial velocity and the acceleration, so we must use a second kinematics equation.

where:
d = distance = 100[m]
(8^2) = (8 + 5*a)^2 - (2*a*100)
64 = (64 + 80*a + 25*a^2) - 200*a
0 = 80*a - 200*a + 25*a^2
0 = - 120*a + 25*a^2
0 = 25*a(a - 4.8)
therefore:
a = 0 or a = 4.8 [m/s^2]
We choose the value of 4.8 as the acceleration value, since the zero value would not apply.
Returning to the first equation:
8 = Vi - (4.8*5)
Vi = 32 [m/s]
The answer to your question is Speed
Period of months where the weather is the coldest and the days are the shortest.