1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zysi [14]
3 years ago
7

Gayle runs at a speed of 3.85 m/s and dives on a sled, initially at rest on the top of a frictionless snow-covered hill. After s

he has descended a vertical distance of 5.00 m, her brother, who is initially at rest, hops on her back and together they continue down the hill. What is their speed at the bottom of the hill if the total vertical drop is 15.0 m?
Physics
1 answer:
enot [183]3 years ago
6 0

Answer:

Final velocity at the bottom of hill is 15.56 m/s.

Explanation:

The given problem can be divided into four parts:

1. Use conservation of momentum to determine the speed of the combined mass (Gayle and sled)

From the law of conservation of momentum (perfectly inelastic collision), the combined velocity is given as:  

p_i = p_f  

m_1u_1 + m_2v_2 = (m_1 + m_2)v

v = \frac{(m_1u_1 + m_2v_2)}{(m_1 + m_2)}

v=\frac{[50.0\ kg)(3.85\ m/s) + 0]}{(50.0\ kg + 5.00\ kg)}= 3.5\ m/s  

2. Use conservation of energy to determine the speed after traveling a vertical height of 5 m.

The velocity of Gayle and sled at the instant her brother jumps on is found from the law of conservation of energy:  

E(i) = E(f)  

KE(i) + PE(i) = KE(f) + PE(f)  

0.5mv^2(i) + mgh(i) = 0.5mv^2(f) + mgh(f)  

v(f) = \sqrt{[v^2(i) + 2g(h(i) - h(f))]}

Here, initial velocity is the final velocity from the first stage. Therefore:  

v(f) = \sqrt{[(3.5)^2+2(9.8)(5.00-0)]}= 10.5\ m/s

3. Use conservation of momentum to find the combined speed of Gayle and her brother.  

Given:

Initial velocity of Gayle and sled is, u_1(i)=10.5 m/s

Initial velocity of her brother is, u_2(i)=0 m/s

Mass of Gayle and sled is, m_1=55.0 kg

Mass of her brother is, m_2=30.0 kg

Final combined velocity is given as:

v(f) = \frac{[m_1u_1(i) + m_2u_2(i)]}{(m_1 + m_2)}  

v(f)=\frac{[(55.0)(10.5) + 0]}{(55.0+30.0)}= 6.79 m/s  

4. Finally, use conservation of energy to determine the final speed at the bottom of the hill.

Using conservation of energy, the final velocity at the bottom of the hill is:  

E(i) = E(f)  

KE(i) + PE(i) = KE(f) + PE(f)  

0.5mv^2(i) + mgh(i) = 0.5mv^2(f) + mgh(f)  

v(f) = \sqrt{[v^2(i) + 2g(h(i) - h(f))]} \\v(f)=\sqrt{[(6.79)^2 + 2(9.8)(15 - 5.00)]}\\v(f)= 15.56\ m/s

You might be interested in
If a proton and an electron are released when they are 2.50×10^-10m apart (typical atomic distances), find the initial accelerat
katrin [286]

To solve this exercise, we will first proceed to calculate the electric force given by the charge between the proton and the electron (it). From the Force we will use Newton's second law that will allow us to find the acceleration of objects. The Coulomb force between two charges is given as

F = k \frac{q_1q_2}{r^2}

Here,

k = Coulomb's constant

q = Charge of proton and electron

r = Distance

Replacing we have that,

F = (9*10^9)(\frac{(1.602*10^{-19})^2}{2.5*10^{-10}})

F = 3.6956*10^{-9}N

The force between the electron and proton is calculated. From Newton's third law the force exerted by the electron on proton is same as the force exerted by the proton on electron.

The acceleration of the electron is given as

a_e = \frac{F}{m_e}

a_e = \frac{3.6956*10^{-9}}{9.11*10^{-31}}

a_e = 4.0566*10^{21}m/s^2

The acceleration of the proton is given as,

a_p = \frac{F}{m_p}

a_p = \frac{3.6956*10^{-9}}{1.672*10^{-27}}

a_p = 2.21*10^{18}m/s^2

3 0
2 years ago
Its A i did it and i got a
n200080 [17]

Answer:

THATS COOL

Explanation:

4 0
3 years ago
A car traveled at an average speed of 60 mph for two hours. How far did it travel?
Akimi4 [234]
The answer is C- 120 Miles.
6 0
3 years ago
Read 2 more answers
Como foi a despedida do bilhete?​
Dmitrij [34]
Can you translate to english ?
8 0
2 years ago
A migrating robin flies due north with a speed of 12 m/s relative to the air. The air moves due east with a speed of 6.7 m/s rel
mafiozo [28]

Here it is given that speed of migrating Robin is 12 m/s relative to air

so we can say that

\vec v_{ra} = 12 m/s North

so it will be

Let North direction is along Y axis and East direction is along X axis

\vec v_{ra} = 12\hat j

also it is given that speed of air is 6.7 m/s relative to ground

\vec v_a = 6.7 \hat i

now as we know by the concept of relative motion

\vec v_{ab} = \vec v_a - \vec v_b

\vec v_{ra} = \vec v_r  - \vec v_a

now by rearranging the terms

\vec v_r = \vec v_{ra} + \vec v_a

\vec v_r = 12 \hat j + 6.7 \hat i

now we need to find the speed of Robin which means we need to find the magnitude of its velocity which we found above

So here we will say

v_r = \sqrt{12^2 + 6.7^2}

v_r = 13.7 m/s

so the net speed of Robin with respect to ground will be 13.7 m/s

7 0
3 years ago
Other questions:
  • A paper weight is dropped from the roof of a block of multi story flats. Each storey being 3 metre high. It passes the ceiling o
    9·1 answer
  • Rank the work done on the charged particles from highest to lowest
    6·1 answer
  • The sun is the centermost star of our solar system. <br> a. True <br> b. False
    11·2 answers
  • En una barra de 6m que se utiliza como palanca se coloca el fulcro a 2 m de distancia del extremo derecho, como se muestra en la
    13·1 answer
  • Which of these changes would likely occur if the rate of Earth's rotation on its axis decreased? The length of day would be shor
    15·1 answer
  • What is the portion of an electric circuit that is being powered​
    8·1 answer
  • How fast would a rock fall in a vacuum? Based on this, why would Aristotle say that there could be no such thing as a vacuum?
    10·1 answer
  • Question is in the picture
    8·2 answers
  • What does energy and Newton's Laws (all three) have to do with roller coasters?
    8·2 answers
  • A uniformly charged conducting sphere of 1.22m radius has a surface charge density 8.13µCm-2.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!