Simply put, density is how tightly “stuff” is packed into a defined space.
For example, a suitcase jam-packed with clothes and souvenirs has a high density, while the same suitcase containing two pairs of underwear has low density. Size-wise, both suitcases look the same, but their density depends on the relationship between their mass and volume.
Mass is the amount of matter in an object.
Volume is the amount of space that an object takes up in three dimensions.
Density is calculated using the following equation: Density = mass/volume or D = m/v.
If something is heavy for its size, it has a high density. If an object is light for its size it has a low density.
The relative densities of an object and the liquid it is placed in determine whether that object will sink or float.
Answer:
D. It is a chemical reaction because the total mass remains the same when new substances are formed.
Explanation:
A chemical reaction is represented by a chemical equation which show the reactant and products. Reactants are written on left side of arrow while products are written on right side. The number of atoms are remain same however arrangement of atoms is different on both side.
For example:
6H₂O + 6CO₂ + energy → C₆H₁₂O₆ + 6O₂
it is known from balanced chemical equation that 6 moles of carbon dioxide react with the six moles of water and created one mole of glucose and six mole of oxygen. The number of atoms are same on both side however arrangement of atoms is different.
While in case of nuclear reaction small change in mass take place.
In the reaction as follows: NH2- + CH3OH → NH3 + CH3O−, NH2- is the Brønsted-Lowry base.
BRØNSTED-LOWRY BASE:
- According to Bronsted-Lowry definition of a base and acid, a base is substance that accepts an hydrogen ion or proton (H+) while an acid is a substance that donates a proton.
- According to this reaction given as follows: NH2 + CH3OH → NH3+ CH3O-
- NH2- is a reactant that accepts a hydrogen ion (H+) to become NH3+
- NH3+CH3OH is a reactant that donates hydrogen ion (H+)
- Since NH2- accepts a proton, this means that in the reaction as follows: NH2 + CH3OH → NH3 + CH3O−, NH2- is the Brønsted-Lowry base.
Learn more at: brainly.com/question/21736327?referrer=searchResults
Using PV=nRT or the ideal gas equation, we substitute n= 15.0 moles of gas, V= 3.00L, R equal to 0.0821 L atm/ mol K and T= 296.55 K and get P equal to 121.73 atm. The Van der waals equation is (P + n^2a/V^2)*(V-nb) = nRT. Substituting a=2.300L2⋅atm/mol2 and b=0.0430 L/mol, P is equal to 97.57 atm. The difference is <span>121.73 atm- 97.57 atm equal to 24.16 atm.</span>
a) 56g
<h3>Calculation:</h3>
At STP,
22.4 L of N₂ = 1 mol
We have given 44.8 L of N₂, therefore,
44.8 L of N₂ = 
=
mol
We know that,
1 mol of N₂ = 28 g
Hence,
2 mol of N₂ = 28 × 2
= 56g
Hence, there are 56 g of N₂ in 44.8 L of nitrogen gas.
Learn more about calculation at STP here:
brainly.com/question/9509278
#SPJ4