Answer:
Explanation:
You realize that C2H5OH releases -1277.3kJ/mol. We need to convert this to the amount based on the question. We that 22.52g of C2H5OH = 0.48884 mol.
This means that it will release (-1277.3)(0.48884) = 624.40 KJ of heat will be released. Note the negative sign is not necessary here (I think) because it says how much is released and not the change in heat of the system so it should be positive.
Answer:
kinetic
Explanation:
kinetic energy is the energy possessed by a body due to its motion.
Answer: Option (E) is the correct answer.
Explanation:
When we move from top to bottom in a group then there occurs an increase in atomic size of the atoms due to increase in the number of electrons.
For example, in group 2A elements beryllium is the smallest in size whereas radium being at the bottom is the largest in size.
Also, atomic number of beryllium is 4 and atomic number of radium is 88.
Thus, we can conclude that out of the given options radium is the 2A element which has the largest atomic radius.
If I did the math right .. it would be 84.46grams
Answer:
nuclear energy is the cleanest and safest energy source we have available and i agree with this statement for following reasons:
1. Nuclear power is generated by a controlled chain reaction involving the splitting of atoms. A modern nuclear power plant uses the intense heat created by this reaction to heat water and create steam, which turns a turbine and generates electricity. Whereas a coal-fired plant heats water by burning coal, a nuclear plant heats it by splitting atoms. This process is called nuclear fission.
2. Nuclear fission, in simple terms, occurs when an atom splits in two, releasing a massive amount of energy and several subatomic particles called neutrons. These neutrons, in turn, hit and split other atoms, beginning and sustaining the chain reaction. Reactor operators control this reaction in a variety of ways and thus regulate the amount of heat generated and energy produced.
3. The raw fuel for this process is the metal uranium, which must be enriched before it can be used for producing energy in commercial reactors. Enrichment is necessary because mined uranium ore is around 99.3 percent uranium-238, which, in today’s commercial power plants, does not readily split upon exposure to neutrons from the fission chain reaction, and thus makes poor fuel. The other 0.7 percent of mined uranium is uranium-235, which makes excellent fuel. The number refers to the atomic mass, or the total mass of protons and neutrons that make up the atomic nucleus. This difference in mass of the same element makes them two different isotopes of uranium. The enrichment process consists essentially of increasing the percentage of uranium-235 by decreasing the percentage (via removal) of uranium-238.
<h3>i hope you find your answer..</h3>