About 10% to 15% of system charge
Answer:
θ = 4.716 10⁻⁶ rad
Explanation:
In order for the releases to be considered separate, they must meet the Rayleigh criterion that establishes that the maximum diffraction of one star must coincide with the first minimum of the diffraction pattern of the second star.
We use the diffraction equation for a slit
a sin θ = m λ
The minimum occurs at m = 1
sin θ = λ / a
Since the angles in these systems are very small, we can approximate the sine to its angle in radians
θ = λ / a
The telescope has a circular aperture whereby polar cords should be used, which introduces a constant number
θ = 1.22 λ / a
Let's calculate
θ = 1.22 518 10⁻⁹ / 13.4 10⁻²
θ = 4.716 10⁻⁶ rad
Add 100 ML of sulfuric acid to 400 ML of base as an 80H B.
The correct answer is Destructive Interference.Consider the image attached below. Two waves are travelling towards each other. Blue wave always has a positive peak and the red wave always has a negative peak.
Now imagine these waves are moving through a rope. If blue waves will try to move the rope in positive direction, the red wave will pull it down, and thus the two waves will cancel the effect of each other. Thus resulting in a destructive interference.
Answer:
92.397amu
Explanation: The exact amu of the mystery element is obtained by multiplying the relative abundance of each individual isotope by its respective amu and then summing the results.
The sum of the total relative abundance for all the isotopes should be 100%.
However, the relative abundance of the isotope with 95.502amu is not given; therefore to obtain it we subtract the sum of the known relative abundances from 100% as follows:
Relative abundance of isotope with 95.502amu = 100-(23.63+30.53) = 42.84%