This phenomenon is as a result of static friction created by the tumbling clothes. Static friction results from the rubbing together of two or mores objects or body and electrons are stripped from one surface of the clothes more than the other. This creates an electrostatic force of attractions between the positive charges on one cloth and the negative charges on the other cloth.(unlike charges attract).
Answer:
C. Increasing its buoyancy
I think the correct answer from the choices listed above is option B. The very high voltage needed to create a spark across the spark plug is produced at the transformer's secondary winding. <span>The secondary coil is engulfed by a powerful and changing magnetic field. This field induces a current in the coils -- a very high-voltage current.</span>
Given Information:
Current = I = 20 A
Diameter = d = 0.205 cm = 0.00205 m
Length of wire = L = 1 m
Required Information:
Energy produced = P = ?
Answer:
P = 2.03 J/s
Explanation:
We know that power required in a wire is
P = I²R
and R = ρL/A
Where ρ is the resistivity of the copper wire 1.68x10⁻⁸ Ω.m
L is the length of the wire and A is the area of the cross-section and is given by
A = πr²
A = π(d/2)²
A = π(0.00205/2)²
A = 3.3x10⁻⁶ m²
R = ρL/A
R = 1.68x10⁻⁸*(1)/3.3x10⁻⁶
R = 5.09x10⁻³ Ω
P = I²R
P = (20)²*5.09x10⁻³
P = 2.03 Watts or P = 2.03 J/s
Therefore, 2.03 J/s of energy is produced in 1.00 m of 12-gauge copper wire carrying a current of 20 A