Explanation:
It is given that,
Area of nickel wire, 
Resistance of the wire, R = 2.4 ohms
Initial value of magnetic field, 
Final magnetic field, 
Time, t = 1.12 s
Let I is the induced current in the loop of wire over this time. Te emf induced in the wire is given by Faraday's law as :






Induced current in the loop of wire is given by :



So, the induced current in the loop of wire over this time is
. Hence, this is the required solution.
Answer:
emf = 11.667 V
Explanation:
Given: charge q = 0.060 C, electric potential energy E =0.70 J,
Solution :
by definition 1 volt = 1 joule per coulomb
so Voltage = emf = E/C
emf = 0.70 J / 0.060 C
emf = 11.667 V
Answer:
22.02 m
Explanation:
given,
Force, F = 107 N
angle made with horizontal = 13.5◦
Power develop by the lawn roller = 69.4 W
time = 33 s
distance = ?
Force along horizontal= F cos θ
= 107 cos 13.5°= 104 N
Power = 
69.4 = 
W = 2290.2 J
Work done= Force x displacement
displacement= 
= 22.02 m
A possible effect is the risk of Icecaps melted
The correct answer is Reverberation (C)