1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alborosie
3 years ago
10

Find the remaining trigonometric functions of 0 if

Engineering
1 answer:
garik1379 [7]3 years ago
8 0

Answer:

cosΘ=−√558

tanΘ=−3√5555

cscΘ=83

secΘ=−8√5555

cotΘ=−√553

You might be interested in
A lightweight electric car is powered by ten 12-V batteries. At a speed of 100 km/h, the average frictional force is 1500 N. Wha
Aleksandr [31]

Answer:41.67kW

Explanation: a) power = force * velocity

Convert km/hr to m/s=1000m/(60×60s)

=1000/3600

P=F×vel

Power =1500×100× 1000/3600

=1500×100×5/18

=41,666.67W

=41.67kW

6 0
3 years ago
Using the Distortion-Energy failure theory: 8. (5 pts) Calculate the hydrostatic and distortional components of the stress 9. (1
WITCHER [35]

Answer:

Detailed solution is given below:

7 0
4 years ago
Find the time-domain sinusoid for the following phasors:_________
sattari [20]

<u>Answer</u>:

a.  r(t) = 6.40 cos (ωt + 38.66°) units

b.  r(t) = 6.40 cos (ωt - 38.66°) units

c.  r(t) = 6.40 cos (ωt - 38.66°) units

d.  r(t) = 6.40 cos (ωt + 38.66°) units

<u>Explanation</u>:

To find the time-domain sinusoid for a phasor, given as a + bj, we follow the following steps:

(i) Convert the phasor to polar form. The polar form is written as;

r∠Ф

Where;

r = magnitude of the phasor = \sqrt{a^2 + b^2}

Ф = direction = tan⁻¹ (\frac{b}{a})

(ii) Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid (r(t)) as follows:

r(t) = r cos (ωt + Φ)

Where;

ω = angular frequency of the sinusoid

Φ = phase angle of the sinusoid

(a) 5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

5 + j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

(b) 5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

5 - j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(c) -5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{-5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

-5 + j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(d) -5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{-5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

-5 - j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

3 0
3 years ago
The electron concentration in silicon at T = 300 K is given by
puteri [66]

Answer:

E=1.44*10^-7-2.6exp(\frac{-x}{18} )v/m

Explanation:

From the question we are told that:

Temperature of silicon T=300k

Electron concentration n(x)=10^{16}\exp (\frac{-x}{18})

                                        \frac{dn}{dx}=(10^{16} *(\frac{-1}{16})\exp\frac{-x}{16})

Electron diffusion coefficient is Dn = 25cm^2/s \approx 2.5*10^{-3}

Electron mobility is \mu n = 960 cm^2/V-s \approx0.096m/V

Electron current density Jn = -40 A/cm^2 \approx -40*10^{4}A/m^2

Generally the equation for the semiconductor is mathematically given by

Jn=qb_n\frac{dn}{dx}+nq \mu E

Therefore

-40*10^{4}=1.6*10^{-19} *(2.5*10^{-3})*(10^{16} *(\frac{-1}{16})\exp\frac{-x}{16})+(10^{16}\exp (\frac{-x}{18}))*1.6*10^{-19}*0.096* E

E=\frac{-2.5*10^-^7 exp(\frac{-x}{18})+40*10^{4}}{1.536*10^-4exp(\frac{-x}{18} )}

E=1.44*10^-7-2.6exp(\frac{-x}{18} )v/m

7 0
3 years ago
Why would the shear stress be considered as the momentum flux.
oksano4ka [1.4K]

Answer:

A fluid flowing along a flat plate will stick to it at the point of contact

Explanation:

and this is known as the no-slip condition. ... This is the precise reason why shear stress in a fluid can also be interpreted as the flux of momentum.

3 0
2 years ago
Other questions:
  • Which solution causes cells to shrink
    13·1 answer
  • A sample of wastewater is diluted 10 times. The diluted solution has an ultimate biochemical oxygen demand (BOD), Lo, of 30 mg/L
    9·1 answer
  • Technician A says that when using an impact wrench to remove a bolt from the front of an engine's crankshaft, the crankshaft mus
    15·1 answer
  • A __ insulated panel consists of a layer of insulating foam between two osb or plywood panels
    14·2 answers
  • Sadadasdasdasdasdadaaasd1
    14·1 answer
  • Compute the longitudinal tensile strength of an aligned glass fiber-epoxy matrix composite in which the average fiber diameter a
    9·1 answer
  • Air entrainment is used in concrete to: __________.
    11·1 answer
  • Explain how you would solve for total resistance in a parallel circuit versus a series circuit. How would you apply and solve fo
    10·1 answer
  • An American architect whose principles of building included consonance with the landscape was ____________________________.
    13·1 answer
  • Engineers designed a motorcycle helmet from a long-lasting and safe material that protects the wearer from accidents and excessi
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!