Mass of KNO₃ : = 40.643 g
<h3>Further explanation</h3>
Given
28.5 g of K₃PO₄
Required
Mass of KNO₃
Solution
Reaction(Balanced equation) :
2K₃PO₄ + 3 Ca(NO₃)₂ = Ca₃(PO₄)₂ + 6 KNO₃
mol K₃PO₄(MW=212,27 g/mol) :
= mass : MW
= 28.5 : 212,27 g/mol
= 0.134
Mol ratio of K₃PO₄ : KNO₃ = 2 : 6, so mol KNO₃ :
= 6/2 x mol K₃PO₄
= 6/2 x 0.134
= 0.402
Mass of KNO₃ :
= mol x MW KNO₃
= 0.402 x 101,1032 g/mol
= 40.643 g
E=hc/λ =6.626×10^-34×3 ×10^8 / 3×10^7 × 10^-9 = 6.626×10 ^-24J.
Answer:
The octet rule is a chemical rule of thumb that reflects the observation that main group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas
Explanation:
The reason why the reaction written on the picture can be classified as a synthesis reaction is :
the reaction shows one compound that formed from two compounds
hope this helps
The answer is: " NaCl + H₂O " ; (or; write as: " H₂O + NaCl " ) .
________________________________________________________
Specifically:
_________________________________________________________
HCl + NaOH —> NaCl + H₂O ; or; write as:
NaOH + HCl —> H₂O + NaCl .
_______________________________________________________
This type of "double-replacement" reaction is called "neutralization".
Since we are adding a strong acid to a strong base (reactants), we know that the product will be: 1) a salt ; and 2) water. Since we know one of the reactants will be "water" (H₂O) ; we can find the base (i.e. , the "remaining product") from selecting the "unused elements" to form the corresponding "salt".
________________________________________________________