Microscope
A microscope shines a light through a slide with the sample of the object on and you look through a lens that allows you to magnify it by a very significant amount depending on what kind of microscope you have (a powerful electron microscope can magnify to the atomic level).
Answer:
centripetal acceleration of the ball is 6.9 m/s/s
tangential speed of the ball is 2.2 m/s
Explanation:
As we know that ball complete 5 rotations in 10 seconds
so frequency of rotation of ball is given as

now we know that angular frequency is given as



Now centripetal acceleration is given as



now the velocity of the ball at this angular frequency is given as



If that's the case, then
50 units = 0.55 x the input energy
Divide each side by 0.55 :
50 units/0.55 = the input energy =
<span> 90 and 10/11 units</span>
Question 1.
- mass = 4500 kg
- potential energy (p.e) = 67500 J
now, we know :
=》

=》

=》

=》

=》

note : if we take acceleration due to gravity as 9.8, then height = 1.53 m
Question 2.
- mass = 4500 kg
- kinetic energy = 63000 j
we know,
=》

=》

=》

=》

=》

=》

or
=》

In order to calculate the time taken by the snowball to reach the highest point in its journey, we need to consider the variables along the y-direction.
Let us list out what we know from the question so that we can decide on the equation to be used.
We know that Initial Y Velocity
= 8.4 m/s
Acceleration in the Y direction
= -9.8 m/
, since the acceleration due to gravity points in the downward direction.
Final Y Velocity
= 0 because at the highest point in its path, an object comes to rest momentarily before falling down.
Time taken t = ?
From the list above, it is easy to see that the equation that best suits our purpose here is 
Plugging in the numbers, we get 0 = 8.4 - (9.8)t
Solving for t, we get t = 0.857 s
Therefore, the snowball takes 0.86 seconds to reach its highest point.