Answer:
The viscosities of the oils are 0.967 Pa.s and 1.933 Pa.s
Explanation:
Assuming the two oils are Newtonian fluids.
From Newton's law of viscosity for Newtonian fluids, we know that the shear stress is proportional to the velocity gradient with the viscosity serving as the constant of proportionality.
τ = μ (∂v/∂y)
There are oils above and below the plate, so we can write this expression for the both cases.
τ₁ = μ₁ (∂v/∂y)
τ₂ = μ₂ (∂v/∂y)
dv = 0.3 m/s
dy = (0.06/2) = 0.03 m (the plate is centered in a gap of width 0.06 m)
τ₁ = μ₁ (0.3/0.03) = 10μ₁
τ₂ = μ₂ (0.3/0.03) = 10μ₂
But the shear stress on the plate is given as 29 N per square meter.
τ = 29 N/m²
But this stress is a sum of stress due to both shear stress above and below the plate
τ = τ₁ + τ₂ = 10μ₁ + 10μ₂ = 29
But it is also given that one viscosity is twice the other
μ₁ = 2μ₂
10μ₁ + 10μ₂ = 29
10(2μ₂) + 10μ₂ = 29
30μ₂ = 29
μ₂ = (29/30) = 0.967 Pa.s
μ₁ = 2μ₂ = 2 × 0.967 = 1.933 Pa.s
Hope this Helps!!!
Answer:
A. Forces that act perpendicular to the surface and pull an object apart exert a tensile stress on the object.
Explanation:
Tensile stress is referred as a deforming force, in which force acts perpendicular to the surface and pull an object apart, attempting to elongate it.
The tensile stress is a type of normal stress, in which a perpendicular force creates the stress to an object’s surface.
Hence, the correct option is "A."
Answer:
This doesn't represent an equilibrium state of stress
Explanation:
∝ = 1 , β = 1 , y = 1
x = 0 , y = 0 , z = 0 ( body forces given as 0 )
Attached is the detailed solution is and also the conditions for equilibrium
for a stress state to be equilibrium all three conditions has to meet the equilibrum condition as explained in the attached solution
Answer:
A) 209.12 GPa
B) 105.41 GPa
Explanation:
We are given;
Modulus of elasticity of the metal; E_m = 67 GPa
Modulus of elasticity of the oxide; E_f = 390 GPa
Composition of oxide particles; V_f = 44% = 0.44
A) Formula for upper bound modulus of elasticity is given as;
E = E_m(1 - V_f) + (E_f × V_f)
Plugging in the relevant values gives;
E = (67(1 - 0.44)) + (390 × 0.44)
E = 209.12 GPa
B) Formula for upper bound modulus of elasticity is given as;
E = 1/[(V_f/E_f) + (1 - V_f)/E_m]
Plugging in the relevant values;
E = 1/((0.44/390) + ((1 - 0.44)/67))
E = 105.41 GPa
Answer:
to be or not to be
Explanation:
Vivi is a drummer for a band. She burns 756756756 calories while drumming for 333 hours. She burns the same number of calories each hour.